K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Mày bị điên à???????//

13 tháng 5 2018

Nà Ní!!!!!!!!!!!!!!!!!!!!!!!!!!!

tam giác làm sao có 3 góc nhọn dc :p

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

19 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác CEHD có:

∠(CED) = 90 0  (do BE là đường cao)

∠(HDC) =  90 0  (do AD là đường cao)

⇒ ∠(CED) + ∠(HDC) = 180 0

Mà ∠(CED) và ∠(HDC) là 2 góc đối của tứ giác CEHD nên CEHD là tứ giác nội tiếp

22 tháng 5 2022

xét tứ giác BFHD có 

góc BFH + góc BDH = 180 

mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE 

chứng minh tương tự với tứ giác CEHD 

=> góc HDE = góc HCE 

Xét tứ giác BFEC có 

góc BFC = góc BEF = 90 

mà nó là 2 góc kề => tứ giác nội tiếp 

mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC 

=> góc FIE = góc FBE + góc FCE 

=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE

mà nó là 2 góc kề => nội tiếp 

=> điều phải cm

 

25 tháng 8 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Tam giác ADB vuông tại D có: ∠(A1) + ∠(ABC) = 90o (1)

Tam giác BCF vuông tại F có: ∠(C1) + ∠(ABC) = 90o (2)

Từ (1)và (2) ⇒ ∠(A1) = ∠(C1)

Mặt khác, ta có: ∠( A 1 ) = ∠( C 2 ) ( 2 góc nội tiếp cùng chắn cung BM)

⇒ ∠( C 1 ) = ∠( C 2 )

⇒ CD là tia phân giác của góc HCM

Xét tam giác HCM có: CD vừa là tia phân giác vừa là đường cao (CD⊥HD)

⇒ Δ HCM cân tại C

⇒ CD cũng là trung tuyến của của HM hay H và M đối xứng với nhau qua D.

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.

10 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét ΔAEH và ΔADC có:

∠(AEH) = ∠(ADC) =  90 0

∠(DAC) là góc chung

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ AE.AC = AD.AH

Xét Δ BEC và ΔADC có:

∠(BEC) = ∠(ADC) = 90 0

∠(ACD) là góc chung

⇒ ΔBEC ∼ ΔADC (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC