Tính:
52/1.6 + 52/ 6.11 + 52/11.16 + 52/16.21 + 52/21.26 + 52/26.31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{101\cdot106}\right)\\ =5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\\ =5\left(1-\dfrac{1}{106}\right)=5\cdot\dfrac{105}{106}=\dfrac{525}{106}\)
Hình như bạn chép sai đề, mình sửa nhé :
\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{26.31}\\ =>\dfrac{S}{5}=\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{26.31}\\ =>\dfrac{S}{5}=\dfrac{6-1}{1.6}+\dfrac{11-6}{6.11}+\dfrac{16-11}{11.16}+...+\dfrac{31-26}{26.31}\\ =>\dfrac{S}{5}=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{26}-\dfrac{1}{31}=1-\dfrac{1}{31}=\dfrac{30}{31}\\ =>S=\dfrac{30}{31}.5=\dfrac{150}{31}\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}=1\)
\(=x\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\right)=1\)
\(=x\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)=1\)
\(=x\left(1-\dfrac{1}{31}\right)=1\)
\(\Rightarrow x=1:\left(1-\dfrac{1}{31}\right)=\dfrac{31}{30}\)
TA CÓ :A=15-15/6+15/6-15/11+15/11-15/16+15/16-15/21+15/21-15/26+15/26-15/31+15/31-15/36
A=15-15/36=14,5833333 >2
Làm
Ta có :
A = 15/1.6 + 15/6.11 + 15/11.16 + 15/16.21 + 15/21.26 + 15/26.31 + 15/31.36
A = 15. ( 1/1.6 + 1/6.11 + 1/11.16 + 1/16.21 + 1/21.26 + 1/26.31 + 1/31.36 )
A = 15 . ( 1/1 - 1/6 + 1/6 - 1/11 + 1/11-1/16 + 1/16 - 1/21 + 1/21 - 1/26 + 1/26 - 1/31 + 1/31 - 1/36 )
A = 15 . ( 1 - 1/36 )
A = 15 . ( 36 /36 - 1/36 )
A = 15 . 35/36
A = 175/12
Ta có : A = 175/12 với 2
Ta quy đồng :
+) A= 175/12 = 175.1/12.1 = 175/12
+) 2 = 2.12/1.12 = 24/12
Mà 175/12 > 24/12
=> 175/12 > 2
=> A > 2 ( đpcm )
HỌC TỐT
E=\(\frac{10}{1\cdot6}\) +\(\frac{10}{6\cdot11}\) +\(\frac{10}{11\cdot16}\) +\(\frac{10}{16\cdot21}\) +\(\frac{10}{21\cdot26}\) +\(\frac{10}{26\cdot31}\) = 5*(1-\(\frac{1}{31}\) ) =5*\(\frac{30}{31}\) =\(\frac{150}{31}\)
Ta có:
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}\)
Vậy \(A=\frac{150}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{5.30}{31}=\frac{150}{31}\)
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
Ta có : \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+.....+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)