\(2x+|x-1|=11-x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x :
a) | x + 12x | = 2x
=> \(\orbr{\begin{cases}13x=2x\\13x=-2x\end{cases}}\)
=> \(\orbr{\begin{cases}11x=0\\15x=0\end{cases}}\)
=> \(x=0\)
b) 3x − |x + 1| = 1
=> |x + 1| = 3x -1
=>\(\orbr{\begin{cases}x+1=3x-1\\x+1=1-3x\end{cases}}\)
=> \(\orbr{\begin{cases}2x=2\\4x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
c) |2x + 3| = x + 1
=> \(\orbr{\begin{cases}2x+3=x+1\\2x+3=-x-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\3x=-4\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}\)
b) 3x - |x + 1| = 1
<=> |x + 1| = 3x - 1 (1)
ĐK : \(x\ge\frac{1}{3}\)
Khi đó (1) <=> \(\orbr{\begin{cases}x+1=3x-1\\x+1=-3x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=2\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(\text{loại}\right)\\x=1\end{cases}}\)
Vậy x = 1
c) ĐK : x + 1\(\ge0\Rightarrow x\ge-1\)
Khi đó |2x + 3| = x + 1
<=> \(\orbr{\begin{cases}2x+3=x+1\\2x+3=-x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ||x + 9| + 11| = 2x + 11 (1)
ĐK : \(2x+11\ge0\Rightarrow x\ge-\frac{5}{2}\)
Khi đó (1) <=> \(\orbr{\begin{cases}\left|x+9\right|+11=2x+11\\\left|x+9\right|+11=-2x-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x+9\right|=2x\\\left|x+9\right|=-2x-22\end{cases}}\)
Khi |x + 9| = 2x (x \(\ge0\))
<=> \(\orbr{\begin{cases}x+9=2x\\x+9=-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\left(tm\right)\\x=-3\left(\text{loại}\right)\end{cases}}\)
Khi |x + 9| = -2x - 22 ( \(-\frac{5}{2}\le x\le-11\))
<=> \(\orbr{\begin{cases}x+9=-2x-22\\x+9=2x+22\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{31}{3}\\x=-13\end{cases}}\left(\text{loại}\right)}\)
Vậy x = 9
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
1)
x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b)
`x^4 -2x^3=0`
`<=>x^3 (x-2)=0`
\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`(2x-11)(x^2 -1)=0`
\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)
4)
`x^3 -36x=0`
`<=>x(x^2 -36)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
5)
`2x+19=0`
`<=>2x=-19`
`<=>x=-19/2`
b: =>15-x=-10
hay x=25
a: =>-2x+17=9
=>-2x=-8
hay x=4
d: \(\Leftrightarrow9x^2=81\)
hay \(x\in\left\{3;-3\right\}\)
e: \(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\3-x=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)
\(-16-8x=18-6x\)
\(-16-8x-18+6x=0\)
\(-34-2x=0\)
\(2x=-34\Leftrightarrow x=-17\)
b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0
\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)
\(x^2+3x+x^2-x-2=2x^2+2x\)
\(2x^2+2x-2=2x^2+2x\)
\(2x^2+2x-2x^2-2x-2=0\)
\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)
a: =>14x+20+5=6x-9-9x
=>14x+25=-3x-9
=>17x=-34
=>x=-2
b: =>\(2x^2-30x+2x-30=2x^2+10x-10x-50\)
=>-28x-30=-50
=>-28x=-20
=>x=20/28=5/7
c: =>2x+x^3-x=x^3+1
=>x=1
d: =>x^3-3x^2+3x-1-x(x^2+2x+1)=10x-2x^2-11x-22
=>x^3-3x^2+3x-1-x^3-2x^2-x=-2x^2-x-22
=>-5x^2+2x-1+2x^2+x+22=0
=>-3x^2+3x+21=0
=>x^2-x-7=0
=>\(x=\dfrac{1\pm\sqrt{29}}{2}\)
a, \(\left(4x-3\right)\left(x-5\right)-2x\left(2x-11\right)\)
\(=4x^2-20x-3x+15-4x^2+22x\)
\(=-x+15\)
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
\(2x+|x-1|=11-x\)(1)
\(TH1:x-1\ge0\Leftrightarrow x\ge1\)
Khi đó (1) \(\Leftrightarrow2x+x-1=11-x\)
\(\Leftrightarrow2x+x+x=11+1\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\left(TM\right)\)
\(TH2:x-1< 0\Leftrightarrow x< 1\)
Khi đó (1) \(\Leftrightarrow2x-x+1=11-x\)
\(\Leftrightarrow2x-x+x=11-1\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)(Loại)
Vậy.....
Trả lời
x=3
nha
222222@@