1/ Tính tổng
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
b)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
c)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)
2/ Chứng tỏ rằng \(\frac{2n+1}{3n+2}\) và\(\frac{2n+3}{4n+8}\)là các phân số tối giản
3/ Cho \(A=\frac{n+2}{n-5}\)\(\left(n\in Z;n\ne5\right)\)Tìm n để \(A\in Z\)
4/ Chứng mình rằng:
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)\(\left(n,a\inℕ^∗\right)\)
b) Áp dụng câu a tính:
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) \(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
5/ Với giá trị nào của \(x\in Z\)các phân số sau có giá trị là một số nguyên
a)\(A=\frac{3}{x-1}\) b)\(B=\frac{x-2}{x+3}\) c)\(C=\frac{2x+1}{x-3}\) d)\(D=\frac{x^2-1}{x+1}\)
a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)
\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)
\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(\frac{100}{101}\)
Mình cần gấp, ai trả lời nhanh nhất mình k cho