K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Đa thức vô nghiệm

16 tháng 4 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.



Xem thêm tại: http://loigiaihay.com/bai-55-trang-48-sgk-toan-7-tap-2-c42a6681.html#ixzz5CqPx0b5N

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

7 tháng 7 2020

Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến

f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9

c) Tính f(x) + g(x); f(x) - g(x)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9

= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )

= -2x5 - 14x4 - 2x3 -x2 + 7x + 18

\(\left(-x\right)^2+6x=0\)

\(x\left(x+6\right)=0\)

  • \(x=0\)
  • \(x+6=0\Rightarrow x=-6\)
4 tháng 3 2020

Để C(x) có nghiệm

\(\Leftrightarrow8x^3-2x=0\)

\(\Leftrightarrow2x\left(4x^2-1\right)=0\)

\(\Leftrightarrow x\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow x\in\left\{0,\frac{1}{2},-\frac{1}{2}\right\}\)

Cho H(x) = 0 ta được:

X^2 - 7 = 0

X^2 = 7

X = căn 7 hoặc x = âm căn 7.

Vậy nghiệm của đa thức đã cho là x = căn 7 hoặc x = âm căn 7.

30 tháng 5 2019

123456789 x 987654321 x 0 = 0

HOK TOT

30 tháng 5 2019

= 0

hello 

17 tháng 5 2017

\(x^2-x+1=\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2-x+1\ne0\)

Vậy đa thức trên vô nghiệm

17 tháng 5 2017

x2 - x + 1 = (x - 1).x + 1

Vì (x - 1) ; x là 2 số liên tiếp 

=> x.(x - 1) \(\ge0\)

mặt khác , lại cộng 1 vào 

=> x.(x - 1) + 1\(\ge1\)

=> Biểu thức đó không có nghiệm 

Vì biểu thức có nghiệm là biểu thức phải có kết quả bằng 0 đề xác định được nghiệm , nhưng trong trường hợp này , kết quả của biểu thức lớn hơn hoặc bằng 1

26 tháng 3 2016

7x2 - 15x + 8 = 0

\(\Leftrightarrow\)7x- 7x - 8x +8 = 0

\(\Leftrightarrow\)7x.(x - 1) - 8.(x - 1) = 0

\(\Leftrightarrow\)(7x - 8)(x - 1) = 0

\(\Leftrightarrow\)7x - 8 = 0 và x - 1 = 0

\(\Leftrightarrow\) x = 8/7 và x= 1

       x2 - 5x - 6 = 0

<=>x2 - x + 6x - 6 = 0

<=>x(x-1) + 6(x-1) = 0

<=> (x+6)(x-1) = 0

<=> x+6 = 0 và x-1 = 0

<=> x = -6, x= 1