cho tam giac ABC co AB<AC ,ke duong cao AH .so sanh goc BAH va goc HAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Xét \(\Delta ADB\) và \(\Delta ADE\) có :
AB=AE(gt)
\(\widehat{DAB}=\widehat{DAE}\left(gt\right)\)
Cạnh AD(chung)
\(\Rightarrow\Delta ADB=\Delta ADE\left(c-g-c\right)\)
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin30^0=6:\dfrac{1}{2}=12\left(cm\right)\)
\(\Leftrightarrow AC=6\sqrt{3}\left(cm\right)\)
A B C G M
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
A B C 2 3 4 6 D E
a)Ta có:\(\dfrac{AE}{AC}\)=\(\dfrac{2}{4}\)=\(\dfrac{1}{2}\)
\(\dfrac{AD}{AB}\)=\(\dfrac{3}{6}\)=\(\dfrac{1}{2}\)
nên:\(\dfrac{AE}{AC}\)=\(\dfrac{AD}{AB}\)
xét ΔADE và ΔACB có: \(\dfrac{AD}{AC}\)=\(\dfrac{AE}{AB}\)(CMT)
góc A chung
vậy ΔADE ∼ ΔACB(c.g.c)
Áp dụng định lí Py-ta-go trong tam giác ABC
Ta có: 32+42=9+16=25(cm)
=>BC=\(\sqrt{25}\)=5(cm)
Vậy tam giác ABC là tam giác vuông tại A
Ta có :
\(AB< AC\Rightarrow\)Góc C < Góc B ( quan hệ góc đối diện với cạnh lớn hơn trong tam giác )
Xét tam giác BHA vuông tại H
=> Góc B + Góc BAH = 90 độ ( 1 )
Xét tam giác HAC vuộng tại H
=> Góc C + Góc CAH = 90 độ ( 2 )
Từ ( 1 ) ; ( 2 )
=> Góc B + Góc BAH = Góc C + Góc CAH
mà Góc C < Góc B
=> Góc BAH < Góc CAH
Chúc bạn học tốt !!!
kb vs mk nha , mk là phúc hok lp 3