Với giá trị nào của x ta có:
a)\(|x|+x=0\)
b)\(x+|x|=2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\left|x\right|+x=0\)thì x < 0
b, Để \(x+\left|x\right|=2x\)thì x > 0
+) Với x ≥ 0 thì |x| = x nên ta có: x + x = 2x ⇒ 2x = 2x ⇒ 0 = 0 (luôn đúng)
⇒ x + |x| = 2x luôn có nghiệm đúng với x ≥ 0
+) Với x < 0 thì |x| = -x nên ta có: x – x = 2x ⇒ 0 = 2x ⇒ x = 0 (loại)
Vậy với x ≥ 0 thì x + |x| = 2x.
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
a: ĐKXĐ: x<>-2/3
b: F=0
=>8-2x=0
=>x=4
d: F<0
=>(2x-8)/(3x+2)>0
=>x>4 hoặc x<-2/3
a)\(|x|+x=0\)
\(|x|=-x\)
Mà \(|x|\ge0\)
Nên\(-x\ge0\)
\(\Leftrightarrow x\le0\)
b)\(x+|x|=2x\)
\(|x|=x\)
Mà \(|x|\ge0\)
Nên\(x\ge0\)
x hoặc -x + x=0 => x=0