K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\)
\(\Leftrightarrow x=\frac{\frac{10}{y}+\frac{3}{2}}{\frac{y+2}{2y}}\)
\(\Leftrightarrow x=\frac{20+3y}{y+2}\)
\(\Leftrightarrow x=\frac{3\left(y+2\right)+14}{y+2}\)
\(\Leftrightarrow x=3+\frac{14}{y+2}\)
Để x nguyên thì \(y\inƯ\left(14\right)\)
Tiếp tự làm nhé

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

25 tháng 3 2018

\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)

\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)

\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)

Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)

=> x - 29 = 0

=> x = 29.

1 tháng 4 2018

Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)

=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)

Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)

Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2

15 tháng 2 2016

\(-\frac{4}{8}=-\frac{1}{2}=\frac{5}{-10}=-\frac{7}{14}=\frac{12}{-24}\Rightarrow x=5;y=14;z=12\)

15 tháng 2 2016

khó @gmail.com

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

15 tháng 2 2016

khó @gmail.com

15 tháng 2 2016

nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn 

11 tháng 4 2018

<=> \(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\) <=> \(x.\frac{y+2}{2y}=\frac{3y+20}{2y}\) => \(x=\frac{3y+20}{y+2}=\frac{3y+6+14}{y+2}=\frac{3\left(y+2\right)}{y+2}+\frac{14}{y+2}\) => \(x=3+\frac{14}{y+2}\)

=> để x nguyên dương thì 14 chia hết cho y+2 => y+2=(2;7;14) => y=(0,5,12) => x=(10, 5, 4), y=0 loại => Còn 2 kết quả

Đáp số: Các cặp (x, y) thỏa mãn là: (5, 7); (4, 12)