K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)

\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)

\(=\left(a^2\right)^2-\left(2a+3\right)^2\)

\(=a^4-\left(2a+3\right)^2\)

b: \(\left(-a^2-2a+3\right)^2\)

\(=\left(a^2+2a-3\right)^2\)

\(=a^4+4a^2+9+4a^3-18a-6a^2\)

\(=a^4+4a^3-2a^2-18a+9\)

c: \(\left(x-y-z\right)^2\)

\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)

\(=x^2-2xy-2xz+y^2+2yz+z^2\)

d: \(\left(x+y+z\right)\left(x-y-z\right)\)

\(=x^2-\left(y+z\right)^2\)

\(=x^2-y^2-2yz-z^2\)

1:

a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)

b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)

c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)

2 tháng 9 2021

Bài 2: tất cả đều ở dạng tích rồi mà

a) \(x^4+4x^2+4=\left(x^2+2\right)^2\)

b) \(\left(2y-x\right)^2+2\left(2y-x\right)+1=\left(2y-x+1\right)^2\)

c) \(\left(2a-4b\right)^2+4a-8b+1=\left(2a-4b\right)^2+2\cdot\left(2a-4b\right)\cdot1+1^2=\left(2a-4b+1\right)^2\)

16 tháng 3 2016

Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhéok

29 tháng 1 2017

Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.