K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

     \(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)

\(\Leftrightarrow\)\(x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)

\(\Leftrightarrow\)\(3x^3+6x=x^3+6x^2+12x+8\)

\(\Leftrightarrow\)\(2x^3-6x^2-6x-8=0\)

\(\Leftrightarrow\)\(x^3-3x^2-3x-4=0\)

\(\Leftrightarrow\)\(x^3-4x^2+x^2-4x+x-4=0\)

\(\Leftrightarrow\)\(\left(x-4\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x-4=0\)   (vì x2 + x + 1 = (x + 0,5)2 + 0,75 > 0)

\(\Leftrightarrow\)\(x=4\)

Vậy...

26 tháng 11 2018

a) x = 0                 b) x = - 1 3

c) x = 28 15               d) x = -82.

7 tháng 2 2017

a) Biến đổi về dạng (x - 3)(x + 2) = 0. Tìm được x  ∈ { - 2 ; 3 }

b) Thu gọn về dạng -2x + 3 = 0. Tìm được x = 3 2

b: 4(x+1)^2-9(x-1)^2=0

=>(2x+2)^2-(3x-3)^2=0

=>(2x+2-3x+3)(2x+2+3x-3)=0

=>(-x+5)(5x-1)=0

=>x=1/5 hoặc x=5

c: (x-1)^3+x^3+(x+1)^3=(x+2)^3

=>x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8

=>3x^3+6x-x^3-6x^2-12x-8=0

=>2x^3-6x^2-6x-8=0

=>x^3-3x^2-3x-4=0

=>x^3-4x^2+x^2-4x+x-4=0

=>(x-4)(x^2+x+1)=0

=>x-4=0

=>x=4

17 tháng 2 2020

a) \(x^3+2\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=x^3+x-4-\left(x-7\right)\).

\(\Leftrightarrow x^3+2\left(x^2-2x+1\right)-2\left(x^2-1\right)=x^3+x-4-x+7\)

\(\Leftrightarrow x^3+2x^2-4x+2-2x^2+2=x^3+3\)

\(\Leftrightarrow x^3-4x+4=x^3+3\)

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{4}\right\}\)

b) \(2\left(x-3\right)+1=2\left(x+1\right)-9\)

\(\Leftrightarrow2x-6+1=2x+2-9\)

\(\Leftrightarrow2x-5=2x-7\)

\(\Leftrightarrow2=0\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

c) \(3\left(x+1\right)\left(x-1\right)-5=3x^2+2\)

\(\Leftrightarrow3\left(x^2-1\right)-5=3x^2+2\)

\(\Leftrightarrow3x^2-3-5=3x^2+2\)

\(\Leftrightarrow3x^2-8=3x^2+2\)

\(\Leftrightarrow0=10\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

9 tháng 12 2019

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

27 tháng 9 2019

Ta có:

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

⇔ 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66

⇔ 0x = 0

⇒ Phương trình đã cho vô số nghiệm.

Vậy phương trình đã cho vô số nghiệm.

17 tháng 12 2017

a) Triển khai hằng đẳng thức và rút gọn được 8x + 12 = 0

Từ đó tìm được x = - 3 2  

b) Sử dụng hằng đẳng thức, biến đổi phương trình về dạng: (x - 3)(2 x 2  - 4x) = 0

Sưe dụng phương pháp giải PT tích tìm được x ∈ {0; 2; 3}

c) Quy đồng khử mẫu ta được 48x - 16 = 0

Từ đó tìm được x = 1 3  

d) Quy đồng khử mẫu ta được 3x + 6 = 2x + 63

Từ đó tìm được x = 57.

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với