Tìm max
A= x2/ x4 + x2 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A-\left(x^2+y^2-4xy\right)=x^2+4xy+3x^2\)
\(\Leftrightarrow A=x^2+4xy+3x^2+x^2+y^2-4xy\)
\(\Leftrightarrow A=5x^2+y^2\)
\(B+\left(-x^4+x^2-2x^3-\dfrac{1}{3}\right)=3x^2-2x^3+x-\dfrac{2}{3}\)
\(\Leftrightarrow B=3x^2-2x^3+x-\dfrac{2}{3}+x^4-x^2+2x^3+\dfrac{1}{3}\)
\(\Leftrightarrow B=x^4+2x^2+x-\dfrac{1}{3}\)
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
Lời giải:
$x^6-x^4+x^2+m=x^4(x^2-1)+(x^2-1)+m+1$
$=(x^2-1)(x^4+1)+m+1$. Như vậy, đa thức này chia cho $x^2-1$ dư $m+1$
Vì $x^6-x^4+x^2+m$ chia hết cho $x^2-1$ nên $m+1=0$
$\Leftrightarrow m=-1$
Đáp án B.
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)