Tìm số nguyên x để x2-1 chia hết cho x+1?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
2x^2-x chia hết cho x+1
=>2x^2+2x-3x-3+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
1:
a: =>7(x+1)=72-16=56
=>x+1=8
=>x=7
b: (2x-1)^3=4^12:16=4^10
=>\(2x-1=\sqrt[3]{4^{10}}\)
=>\(2x=1+\sqrt[3]{4^{10}}\)
=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)
c: \(\Leftrightarrow6x-2+7⋮3x-1\)
=>3x-1 thuộc Ư(7)
mà x là số tự nhiên
nên 3x-1 thuộc {-1}
=>x=0
d: x^2+7 chia hết cho 2x^2+1
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>2x^2+1 thuộc Ư(13)
=>2x^2+1=1(Vì x là số tự nhiên)
=>x=0
\(\Leftrightarrow x^2+2x-5x-10+7⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-1;-3;5;-9\right\}\)
\(2x-1⋮x+1\)
\(\Rightarrow2x+2-3⋮x+1\)
\(\Rightarrow2\left(x+1\right)-3⋮x+1\)
\(2\left(x+1\right)⋮x+1\)
\(\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)\)
\(x\inℤ\Rightarrow x+1\inℤ\)
\(\Rightarrow x+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2\right\}\)
Vì 2x-1chia hết cho x+1
=>2{x+1}-3chia hết cho x+1[mà 2[x+1]chia hết cho x+1]
=>-3 chia hết cho x+1
=>x+1e Ư[-3]
x+1 e Ư [-3;-1;1;3}
=> x e Ư [ -4;-2;0;2]
Vậy x ...........