K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Trước hết ta chứng minh bài toán phụ sau:

Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)

Thật vậy \(x+y+z=0\Leftrightarrow z=-x-y\)

Ta có: \(x^3+y^3+z^3=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(-x-y\right)^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2-x^2-2xy-y^2\right)\)

\(=\left(x+y\right).\left(-xy\right)=\left(-x-y\right).xy\)

Thay \(z=-x-y\) ta được: \(x^3+y^3+z^3=xyz\)

Áp dụng vào bài toán:

Phải chứng minh \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Vậy nên ta sẽ chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)(Chia cả 2 vế cho abc) \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Từ đó ta có điều phải chứng minh. 

5 tháng 9 2017

Áp dụng BĐT svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\) (ĐPCM)

dấu = xảy ra <=> a=b=c=1

5 tháng 9 2017

làm xong rồi mới trả lời

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

NV
20 tháng 7 2021

Ta có:

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3+3ab\left(a+b\right)\right)-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+c^2-2ab-2bc-2ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) (đpcm)

3 tháng 12 2015

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)(*)

và rõ ràng a,b,c khác 0 (theo hệ thức cần chứng minh) nên chia hai vế của (*) cho abc ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)đặt x=1/a; y=1/b; z=1/c ta được x+y+z=0 thì hệ thức cần chứng minh là x3+y3+z3=3xyz đến đây mọi việc trở nên đơn giản hơn

Mời bạn giải tiếp

a: a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b)-3bac

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

b: Đề sai rồi bạn

c: 2(a+b+c)*(b/2+c/2-a/2)

=(a+b+c)(b+c-a)

=(b+c)^2-a^2

=c^2+2bc+c^2-a^2

9 tháng 6 2018

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

9 tháng 6 2018

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)