Cho đa thức P(x)= \(ax^2+bx+c\) và 2a+b=0
CMR: P(-1).P(3)\(\ge\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P(-1) = a - b + c
P(3) = 9a + 3b +c
=> P(3) - P(-1) = (9a + 3b + c) - ( a - b + c) = 8a + 4b
Mà 2a + b = 0 (GT) => 8a + 4b = 0 => P(3) - P(-1) = 0
=> P(3) = P(-1) => P(3). P(-1) = (P(3))^2 lớn hơn hoặc = 0 (đpcm)
ta có: 2a + b = 0
\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)
ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)
\(P_{\left(-1\right)}=a-b+c\)
thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)
\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)
\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)
ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)
\(P_{\left(3\right)}=a9+3b+c\)
thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)
\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)
\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)
\(P_{\left(3\right)}=\frac{-3b}{2}+c\)
\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)
\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)
\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)
Ta có :
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)
Nên :
\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)
\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)
P/s : Đúng nha
Q(x) = ax2 + bx + c
ta có:Q(-3)=9a+(-3)b+c
Q(1)=a+b+c
Q(-3) - Q(1)=
(9a+(-3)b+c)-(a+b+c)
=(9a-a)+)+(-3b-b)+(c-c)
=8a+(-4)b
= 4.2a+4.-b
=4(2a-b)
thay 2a - b = 0 vào đa thức đã cho, ta được:
Q(-3) - Q(1) =4
=>
Q(-3) - Q(1) >0
Ta có:
\(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c\)
\(\Rightarrow P\left(-1\right)=a-b+c\)
\(P\left(3\right)=a.3^2+b.3+c\)
\(\Rightarrow P\left(3\right)=9a+3b+c\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=0\)
\(\Rightarrow P\left(3\right)=P\left(-1\right)\)
\(\Rightarrow P\left(-1\right).P\left(3\right)=P\left(3\right)^2\)
Vì \(P\left(3\right)^2\ge0\)
\(\Rightarrow P\left(-1\right).P\left(3\right)\ge0\)
Lời giải:
Ta có:
\(P(x)=ax^2+bx+c\)
\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)
Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)
\(=8a+4b=4(2a+b)=0\)
\(\Rightarrow P(3)=P(-1)\)
\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)
Ta có đpcm.
2a+b=0=>b=-2a
p(x)=ax^2 -2ax+c
p(-1)=a(-1)^2-2a(-1)+c=3a+c
p(3)=9a-6a+c=3a+c
p(-1).p(3)=(3a+c)^2 >=0=>dpcm
Lời giải:
Ta có:
$P(1)=a+b+c$
$P(-3)=9a-3b+c$
$P(1)+P(-3)=10a-2b+2c=2(5a-b+c)=2.0=0$
$\Rightarrow P(-3)=-P(1)$
$\Rightarrow P(1)P(-3)=-P(1)^2\leq 0$
Ta có đpcm.
Có: \(\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(-1\right).P\left(3\right)=\left(a-b+c\right).\left(9a+3b+c\right)\)
\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)
\(=\left(a-b+c\right)\left(a-b+c\right)\)
\(=\left(a+b-c\right)^2\ge0\left(ĐPCM\right)\)
Với \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)
\(P\left(3\right)=a3^2+3b+c=9a+3b+c\)
từ đó suy ra \(P\left(-1\right).P\left(3\right)=\left(a-b+c\right)\left(9a+3b+c\right)\)
\(=\left(a-b+c\right)\left[\left(8a+4b\right)+a-b+c\right]\)
\(=\left(a-b+c\right)\left[4\left(2a+b\right)+a-b+c\right]\)
\(=\left(a-b+c\right)\left(a-b+c\right)=\left(a-b+c\right)^2\ge\)(đpcm)