K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

thoy mk giải lại nhá 

\(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1^2+1^2+1^2\right)>=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1^2=1\)(bđt bunhiakopski)

dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{3}\)

\(\Rightarrow3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)>=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=\frac{1}{3}\)

4 tháng 5 2018

\(\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1^2+1^2+1^2\right)>=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=1^2=1\)

dấu = xảy ra khi \(\frac{1}{x^2}=\frac{1}{y^2}=\frac{1}{z^2}=\frac{1}{3^2}=\frac{1}{9}\)

\(\Rightarrow3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)>=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=\frac{1}{3}\)

10 tháng 5 2017
x^2 + y^2 + x^2 >= 1/3
<=> x^2 + y^2 + x^2 >= (x + y + z)/3 ( vì x + y + z = 1)
<=> x^2 + y^2 + x^2 - (x + y + z)/3 >= 0
<=> 3x^2 + 3y^2 + 3z^2 - x - y - z >= 0
<=> x(3x - 1) + y(3y - 1) + z(3z - 1) >= 0
<=> x(3x - x - y - z) + y(3y - x - y - z) + z(3z - x - y - z) >= 0
<=> x(2x - y - z) + y(2y - x -z) + z(2z - x - y) >= 0
<=> 2x^2 - xy - xz + 2y^2 - xy - yz + 2z^2 - xz - yz >= 0
<=> (x^2 - 2xy - y^2) + (y^2 - 2yz - z^2) + (x^2 - 2xz - z^2) >= 0
<=> (x - y)^2 + (y - z)^2 - (x - z)^2 >= 0 (đúng)
=> x^2 + y^2 + x^2 >= 1/3

Dấu = xảy ra <=> x = y = z =1/3
10 tháng 5 2017

Cách làm của Nguyễn Đặng Thanh Trúc hơi dài , mik làm cchs khác nhé :

==================

Áp dụng BDDT Co- si dạng engel

Ta có : x2 + y2 + z2 \(\ge\dfrac{\left(x+y+z\right)^2}{1+1+1}=\dfrac{1}{3}\)

Dấu "=" xảy ra khi : x=y=z =1/3

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))

4 tháng 9 2021

undefined

22 tháng 11 2021

x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1

Tính P = x + y + z

 
27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$

Áp dụng BĐT Bunhiacopxky:

$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$

$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$

$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$

26 tháng 9 2016

Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)

=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)

26 tháng 9 2016

Tương tự như vậy thì ta có 

A = xy + xz + yx + yz + zx + zy = 2