Tìm các số nguyên dương x,y:
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\)
\(\Leftrightarrow x=\frac{\frac{10}{y}+\frac{3}{2}}{\frac{y+2}{2y}}\)
\(\Leftrightarrow x=\frac{20+3y}{y+2}\)
\(\Leftrightarrow x=\frac{3\left(y+2\right)+14}{y+2}\)
\(\Leftrightarrow x=3+\frac{14}{y+2}\)
Để x nguyên thì \(y\inƯ\left(14\right)\)
Tiếp tự làm nhé
<=> \(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\) <=> \(x.\frac{y+2}{2y}=\frac{3y+20}{2y}\) => \(x=\frac{3y+20}{y+2}=\frac{3y+6+14}{y+2}=\frac{3\left(y+2\right)}{y+2}+\frac{14}{y+2}\) => \(x=3+\frac{14}{y+2}\)
=> để x nguyên dương thì 14 chia hết cho y+2 => y+2=(2;7;14) => y=(0,5,12) => x=(10, 5, 4), y=0 loại => Còn 2 kết quả
Đáp số: Các cặp (x, y) thỏa mãn là: (5, 7); (4, 12)
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
Ta có: \(\frac{-4}{8}=\frac{-1}{2}=\frac{x}{-10}\)
\(\Rightarrow x=\frac{\left(-10\right).\left(-1\right)}{2}=5\)
Thay x = 5 được \(\frac{5}{-10}=\frac{-1}{2}=\frac{-7}{y}\)
\(\Rightarrow y=\frac{\left(-7\right).2}{-1}=14\)
Thay y = 14 được \(\frac{-7}{14}=\frac{-1}{2}=\frac{z}{-2}\)
\(\Rightarrow z=\frac{\left(-2\right).\left(-1\right)}{2}=1\)
Vậy x = 5 ; y = 14 và z = 1
\(\frac{x}{2}-\frac{3}{2}=\frac{10}{y}-\frac{x}{y}\)
\(\frac{x-3}{2}=\frac{10-x}{y}\)
\(\Leftrightarrow\left(x-3\right)\cdot y=2\cdot\left(10-x\right)\)
\(xy-3y=20-2x\)
\(xy+2x-3y-6=14\)
\(x\left(y+2\right)-3\left(y+2\right)=14\)
\(\left(y+2\right)\left(x-3\right)=14\)
Vậy các cặp (x;y) là: (-11;-3) (17;-1) (-4;-4) (10;0) (1;-9) (5;5) (2;-16) (4;12)