Cho\(\left(P\right):y=x^2\)và \(\left(d\right):y=2x+m^2-2m\)
Tìm m để (P) cắt (d) tại 2 điểm có hoành độ x1,x2 thỏa mãn \(x_1^2+2x_2=3m\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Phương trình hoành độ giao điểm là:
\(x^2-2\left(m-1\right)x-m^2-2m=0\)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(-m^2-2m\right)\)
\(=4m^2-8m+4+4m^2+8m=8m^2+4>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2+4x_1x_2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2x_1x_2=36\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2+2\left(-m^2-2m\right)=36\)
\(\Leftrightarrow4m^2-8m+4-2m^2-4m-36=0\)
\(\Leftrightarrow2m^2-12m-32=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+2\right)=0\)
hay \(m\in\left\{8;-2\right\}\)
Lời giải:
PT hoành độ giao điểm:
$x^2-(2x+2m-1)=0$
$\Leftrightarrow x^2-2x+(1-2m)=0(*)$
Để $(P)$ và $(d)$ cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì pt $(*)$ có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi $\Delta'=1-(1-2m)=2m>0\Leftrightarrow m>0$
Theo định lý Viet:
$x_1+x_2=2$
$x_1x_2=1-2m$
Khi đó:
$x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8$
$\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8$
$\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8$
$\Leftrightarrow 2(1-2m)^2-[2^2-2(1-2m)]=8$
$\Leftrightarrow 8m^2-12m=8$
$\Leftrightarrow 2m^2-3m-2=0$
$\Leftrightarrow (m-2)(2m+1)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{-1}{2}$
Vì $m>0$ nên $m=2$
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Phương trình hoành độ giao điểm:
\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)
Ta có:
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)
\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.
Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow\left|x_1-x_2\right|=5\)
Lại có:
\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)
Khi đó \(\left|x_1^3-x_2^3\right|=50\)
\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)
\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)
\(\Leftrightarrow m^2+m-1=0\)
\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)
Phương trình hoành độ giao điểm:
\(x^2=2\left(m-2\right)x+5\Leftrightarrow x^2-2\left(m-2\right)x-5=0\)
Do \(ac=-5< 0\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu
\(\Rightarrow x_1< 0< x_2\Rightarrow x_2+2>0\)
Theo hệ thức Viet: \(x_1+x_2=2\left(m-2\right)\)
Ta có:
\(\left|x_1\right|-\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1-x_2-2=10\)
\(\Leftrightarrow-2\left(m-2\right)=12\)
\(\Leftrightarrow m=-4\)
Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2+2\right|=10\)
\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=64\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)
\(\Leftrightarrow4\left(m-2\right)^2+20=64\)
\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(a=1;b=-3;c=-m^2+1\)
\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9+4m^2-4=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=2x+m^2-2m\)
\(\Leftrightarrow x^2-2x-\left(m^2-2m\right)=0\)
\(\Delta^'=\left(-1\right)^2-1\cdot\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\left(\forall m\right)\)
=> PT luôn có nghiệm với mọi m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Ta có: \(x_1^2+2x_2=3m\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=3m\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)+x_1x_2=3m\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=3m\)
\(\Leftrightarrow2^2+m^2-2m=3m\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\Rightarrow\orbr{\begin{cases}m=1\\m=4\end{cases}\left(tm\right)}\)
Vậy \(m\in\left\{1;4\right\}\)