K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

+) Lấy a = b  = c = 3 thì bất đẳng thức trên không đúng : \(\frac{2010}{27}

22 tháng 8 2017

Ta có : \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\)

Áp dụng bđt Cauchy Schwaz dạng Engel ta có : 

\(\frac{1}{a^2+b^2+c^2}++\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)

\(=\frac{9}{\left(a+b+c\right)^2}\le\frac{9}{3^2}=1\)(1)

Ta lại có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge3ab+3bc+3ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\Leftrightarrow9\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+ac+bc\le3\Rightarrow\frac{2007}{ab+ac+bc}\ge\frac{2007}{3}=669\)(2)

Cộng vế với vế của (1) và (2) ta được :

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+ac+bc}+\frac{2007}{ab+ac+bc}\ge669+1=670\)

Hay \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)(đpcm) (Dấu "=" xảy ra <=> a = b = c = 1)

22 tháng 8 2017

Ta có: (x−y)2=(x+y)2−4xy=2012−4xy

Như thế, để tìm GTNN,GTLN của xy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y|

Không mất tính tổng quát giả sử: x≥y thì: x≥101y≤100

Khi đó: |x−y|=x−y=x+y−2y=201−2y

Ta có: 1≤y≤100 nên: 1≤|x−y|=201−2y≤199

Lập luận đi ngược lại thì tìm được các cực trị

4 tháng 10 2017

Ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\)

Áp dụng bđt Cauchy - Schwarz dạng Engel ta có : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}=1\)( do \(a+b+c\le3\)) (1)

Lại có : \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

nên \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Leftrightarrow9\ge3\left(ab+bc+ac\right)\Rightarrow ab+bc+ac\le3\)

\(\Rightarrow\frac{2007}{ab+bc+ac}\ge\frac{2007}{3}=669\)(2)

Từ (1) ; (2) \(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\ge670\)

Hay \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)(đpcm)

NV
11 tháng 6 2019

\(B=\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2bc+2ac}+\frac{2007}{ac+bc+ac}\)

\(B\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)

\(B\ge\frac{9}{\left(a+b+c\right)^2}+\frac{6021}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}+\frac{6021}{3^2}=670\)

Dấu "=" xảy ra khi \(a=b=c=1\)

11 tháng 6 2019

ý 2 là sao vậy bạn

4 tháng 11 2017

Áp dụng BĐT B.C.S ta có

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{\left(a+b+c\right)^2}\)

mặt khác do \(a+b+c\le3\Rightarrow\dfrac{9}{\left(a+b+c\right)^2}\ge1\)

\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge1\)(*)

ta lại có \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le3\)

\(\Rightarrow\dfrac{2007}{ab+bc+ac}\ge\dfrac{2007}{3}=669\)(**)

lấy (*)+(**) vế theo vế ta được

\(\dfrac{1}{a^2+b^2+c^2}+\dfrac{2009}{ab+bc+ac}\ge669+1=670\left(dpcm\right)\)

NV
19 tháng 2 2020

\(P=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\Rightarrow P^2=\frac{b^4c^4+c^4a^4+a^4b^4+2a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^2b^2c^2}\)

\(P^2\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)+2a^2b^2c^2}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)

\(\Rightarrow P\ge\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]