K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1  với ( a > b ) => m > n  

=> a.b=5m.5n=25.mn=300

=> mn=300 : 25 = 12

Ta có bảng liệt kê sau : 

m412
n31
a2060
b155
13 tháng 10

siuuuuu

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

a.

Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:

$5a=13b$

$\Rightarrow 5.48x=13.48y$

$\Rightarrow 5x=13y$

$\Rightarrow 5x\vdots 13; 13y\vdots 5$

$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.

Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$

$\Rightarrow x=13; y=5$

$\Rightarrow x=13.48=624; y=5.48=240$

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

b. 

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.

Khi đó:
$BCNN(a,b)=dxy=360$

$ab=dx.dy=d.dxy=6480$

$\Rightarrow d.360=6480$

$\Rightarrow d=18$

$\RIghtarrow xy=360:d=360:18=20$

Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:

$(x,y)=(1,20), (4,5), (5,4), (20,1)$

Đến đây bạn thay vào tìm $a,b$ thôi.

27 tháng 11 2017

mnbvvfghđâqưẻtyuiopơư'';l,./mnb

19 tháng 12 2020

Hu mình cũng dg phân vân á

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

15 tháng 3 2023

Do ƯCLN(a; b) = 15

\(\Rightarrow a=15k\left(k\in Z\right);b=15m\left(m\in Z\right)\)

\(a+15=b\Rightarrow15k+15=15m\)

\(\Rightarrow k+1=m\)

*) k = 1 \(\Rightarrow m=2\)

\(\Rightarrow a=15;b=30\Rightarrow BCNN\left(a;b\right)=30\) (loại)

*) \(k=2\Rightarrow m=3\Rightarrow a=30;b=45\Rightarrow BCNN\left(a;b\right)=90\) (loại)

*) \(k=3\Rightarrow m=4\Rightarrow a=45;b=60\Rightarrow BCNN\left(a;b\right)=180\) (loại)

*) \(k=4\Rightarrow m=5\Rightarrow a=60;b=75\Rightarrow BCNN\left(a;b\right)=300\) (nhận)

Vậy a = 60; b = 75

25 tháng 11 2018

Theo công thức ta có:

a.b=BCNN(a,b).UCLN(a,b)=360

=> UCLN(a,b)=6

Đặt: a=6m; b=6n

=> mn=10=>m;n E {(1;10);(2;5);(5;2);(10;1)}

=> a;b E {(6;60);(12;30);(30;12);(60;6)}

b, tương tự cách làm trên

25 tháng 11 2018

a) a.b=360,BCNN(a,b)=60

Ta có:ƯCLN(a,b).BCNN(a,b)=a.b

           ƯCLN(a,b).60=360

               ƯCLN(a.b)=6

Suy ra a=6m,b=6n với ƯCLN(m,n)=1

thay a=6m,b=6n vào a.b=360 ta được

                                6m.6n=360

                                36mn=360

                                   mn=10

m51210
n21052

do đó

a3061260
b1260306

(câu b gần giống )

10 tháng 11 2016

Ta có: \(UCLN\left(a,b\right)=\frac{a\cdot b}{BCNN\left(a,b\right)}\)

\(->15=\frac{a.b}{300}\)

\(=>a.b=15\cdot300\)

thay b = 15+b.Ta được:

( 15 + a ) . a=4500

Ta thấy: 75 . 60 = 4500

Vậy: \(a=75;b=60\)

        

12 tháng 11 2016

75 và 60