tìm x thuộc Z
a;(x+4)*(|x|+9)<0
b;(16-x)*(|x|+1)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: -7<x<-1
mà \(x\in Z\)
nên \(x\in\left\{-6;-5;-4;-3;-2\right\}\)
Vậy: \(x\in\left\{-6;-5;-4;-3;-2\right\}\)
b) Ta có: -3<x<3
mà \(x\in Z\)
nên \(x\in\left\{2;1;0;1;2\right\}\)
Vậy: \(x\in\left\{2;1;0;1;2\right\}\)
c) Ta có: \(-1\le x\le6\)
mà \(x\in Z\)
nên \(x\in\left\{-1;0;1;2;3;4;5;6\right\}\)
Vậy: \(x\in\left\{-1;0;1;2;3;4;5;6\right\}\)
d) Ta có: \(-5\le x< 6\)
mà \(x\in Z\)
nên \(x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Vậy: \(x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
a: =>5-x=-23
=>x=5+23=28
b: =>x-3-x+7-25+x=54
=>x-21=54
=>x=75
c: =>7-9x-2x+4=-5x-35+27-25=-5x-37
=>-11x+3=-5x-37
=>-6x=-40
=>x=20/3
a.
10-x-5 = (-5) - 7 -11
=>5-x = 0
=>x=5
b
(x-3) - (x+17-24) - (25-x) = 24 - (-30)
=>x - 3 - x - 17 + 24 - 25 - x = 24 + 30
=>-x - 21 = 54
=>-x = 75
=>x = -75
c
(7 - 9x) - (2x - 4) = - (5x + 35) - (-27) - 25
=>7-9x - 2x + 4 = -5x - 35 + 27 - 35
=>11 - 11x + 5x = -43
=>16x = 11 + 43
=>16x = 54
=>x=4
a: Bạn ghi lại đề nha bạn
b: \(30\left(x+2\right)-6\left(x-5\right)-24x=100\)
=>\(30x+60-6x+30-24x=100\)
=>\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)
=>0x=100-90=10(vô lý)
c: \(\left(x-7\right)\left(x+3\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)
=>-3<x<7
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
d: -1<2x-1<4
=>\(-1+1< 2x< 4+1\)
=>0<2x<5
=>0<x<2,5
mà x nguyên
nên \(x\in\left\{1;2\right\}\)
a: 3x+2 chia hết cho x-1
=>3x-3+5 chia hết cho x-1
=>5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: 3x+24 chia hết cho x-4
=>3x-12+36 chia hết cho x-4
=>36 chia hết cho x-4
=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}
=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}
c: x^2+5 chia hết cho x+1
=>x^2-1+6 chia hết cho x+1
=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {0;-2;1;-3;2;-4;5;-7}
d: x^2-5x+1 chia hết cho x-5
=>1 chia hết cho x-5
=>x-5 thuộc {1;-1}
=>x thuộc {6;4}