K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Với những điều kiện đề cho, biểu thức P chỉ có max bạn nhé.

Áp dụng BĐT Bunhiacopxky:

\(P^2=(\sqrt{5x+4}+\sqrt{5y+4}+\sqrt{5z+4})^2\leq (5x+4+5y+4+5z+4)(1+1+1)\\ \Leftrightarrow P^2\leq 3[5(x+y+z)+12]=51\\ \Rightarrow P\leq \sqrt{51}\)

Vậy $P_{\max}=\sqrt{51}$.

Giá trị này đạt tại $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/.9057778380026

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Với những điều kiện đề cho, biểu thức P chỉ có max bạn nhé.

Áp dụng BĐT Bunhiacopxky:

\(P^2=(\sqrt{5x+4}+\sqrt{5y+4}+\sqrt{5z+4})^2\leq (5x+4+5y+4+5z+4)(1+1+1)\\ \Leftrightarrow P^2\leq 3[5(x+y+z)+12]=51\\ \Rightarrow P\leq \sqrt{51}\)

Vậy $P_{\max}=\sqrt{51}$.

Giá trị này đạt tại $x=y=z=\frac{1}{3}$

 

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)

\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)

\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)

Thực hiện tương tự với những biểu thức còn lại suy ra:

\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)

\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)

\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)

\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))

Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)

Dấu bằng xảy ra khi \(x=y=z\)

6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

NV
31 tháng 1 2019

\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)

\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)

\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)

\(\Rightarrow P\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z\)