Cho S=(1+1 phần 2)+(1+2 phần 2 mũ 2)+(1+3 phần 2 mũ 3)+...+(1+2014 phàn 2 mũ 2014)
CMR S<2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
\(\Rightarrow K< \frac{1}{3}\) (1)
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)
\(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)
Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)
2S=2+1+1/2+...+1/2^100
=>S=2-1/2^101
=>\(S=\dfrac{2^{102}-1}{2^{101}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}\)
\(\Rightarrow A< \frac{49}{50}\)
Mà \(\frac{49}{50}< 1\)
\(\Rightarrow A< 1\)
Vậy A<1
Chắc đề thế này!
\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)
\(2S=2+2^2+2^3+2^4+...+2^{2015}\)
\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)
\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)