K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\) ( đpcm ) 

Chúc bạn học tốt ~ 

25 tháng 4 2018

cam on

6 tháng 9 2017

cho a =1/2.3/4.5/6.....99/100.Chứng minh rằng:1/15<a<1/10.

ta co a < 2/3.4/5.....100/101 
nhan hai ve cho a ta co 
a^2 <2/3.4/5...100/101.1/2.3/4.5/6...99/100 
a^2<1/101 <1/100 
a< can 1/100 a <1/10.

Cm tương tự ta dc a>1/15.

Bn cx có thể kham khảo bài làm khác là:https://diendan.hocmai.vn/threads/toan-6-cmr-a-1-10-va-a-1-15.223994/

5 tháng 4 2018

sao lại nhỏ hơn

12 tháng 2 2023

A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +.................+ \(\dfrac{1}{2004^2}\)

A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\) + \(\dfrac{1}{7.7}\)+..............+ \(\dfrac{1}{2004.2004}\)

Vì \(\dfrac{1}{5}>\dfrac{1}{6}>\dfrac{1}{7}>...........>\dfrac{1}{2004}\)

nên ta có : \(\dfrac{1}{5.5}>\dfrac{1}{5.6}>\dfrac{1}{6.6}>\dfrac{1}{6.7}>\dfrac{1}{7.7}>.....>\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)

\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2004.2004}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+..+\dfrac{1}{2004.2005}\)

A > \(\dfrac{1}{5}\) \(-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+....+\dfrac{1}{2004}-\dfrac{1}{2005}\)

A > \(\dfrac{1}{5}\) - \(\dfrac{1}{2005}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{24060}\)

\(\dfrac{1}{65}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{65}\) 

Vì \(\dfrac{12}{65}\) > \(\dfrac{12}{24060}\) nên A>  \(\dfrac{1}{65}\) ( phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn)

Tương tự ta có :

A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\)\(\dfrac{1}{7.7}\)+......+\(\dfrac{1}{2004.2004}\) >\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+.....\(\dfrac{1}{2003.2004}\)

A < \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +......+ \(\dfrac{1}{2003}\) - \(\dfrac{1}{2004}\)

A < \(\dfrac{1}{4}-\dfrac{1}{2004}\) < \(\dfrac{1}{4}\)

\(\dfrac{1}{65}< \)A < \(\dfrac{1}{4}\) (đpcm)

31 tháng 3 2016

Hình như sai đề thì phải chứ mk làm ko đc !!!

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

14 tháng 5 2018

có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100

Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100

=99/100

=> 1/3^2+1/4^2+...+1/100^2<99/100<1

=> đpcm

UNDERSTAND ???

15 tháng 5 2018

đặt A= biểu thức trên

tao có 

A<1/2.3+1/3.4+...+1/99.100

A<1/2-1/3+1/3-1/4+...+1/99-1/100

A<1/2-1/100<1/2

SUY RA A<1/2(DPCM)

21 tháng 7 2019

Ta có : 1/2 = 0,5

            2/3 = 0,666...

=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100

                                           = 1,1,6666... + 3/4 + ... +99/100 > 1

=> 1/2 + 2/3 + ... + 99/100 > 1

 \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)

\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

 \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\le1\)

\(\Rightarrow1-\frac{1}{100}\le1\)