cho a,b,c la 3 canh cua tam giac cmr a/(b+c-a)+b/(a+c-b)+c/(a+b-c) a^2+b^2+c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{b}+b\ge2a;\frac{b^2}{c}+c\ge2b;\frac{c^2}{a}+a\ge2c\)(BĐT cô-si)
\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Rightarrowđpcm\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
- Ta có :
\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}\) \(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
- Theo bất đẳng thức tam giác :
\(\hept{\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}}\)\(\Rightarrow\hept{\begin{cases}c\left(a+b\right)>c^2\\a\left(b+c\right)>a^2\\b\left(a+c\right)>b^2\end{cases}}\) \(\Rightarrow\hept{\begin{cases}c^2< bc+ac\\a^2< ab+ac\\b^2< ab+bc\end{cases}}\) \(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
bài toán cm cái này phải không :a^2 +b^2 > c^2
cho cái đề cm cái gì