chứng minh rằng
-0,7(2016^2015-2^2016) là một số nguyên
giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)
\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)
vậy ta có điều cần chứng minh
Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016
A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016
A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016
A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016
A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016
A=2016 - 2014.(1/2015+1/2016+....+1/4030) -2016
A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)
A=-2014.(1/2015+1/2016+....+1/4030)
mà B = 1/2015+1/2016+....+1/4030
nên A : B = -2014
Ta thấy \(2015^{2016}\)có chữ số tận cùng là 5
Suy ra \(2015^{2016}-1\)có chữ số tận cùng là 4
Vì chỉ có 1 và chỉ 1 số chẵn duy nhất là số nguyên tố (số 2)
Suy ra \(2015^{2016}-1\)là hợp số
Ta có \(2015^{2016}+1\)có chữ số tận cùng là 6 ( vì \(2015^{2016}\)có chữ số tận cùng là 5 (chứng minh trên))
Suy ra \(2015^{2016}+1\)là hợp số (phần giài thích giống phia trên)
Vậy \(2015^{2016}-1\)và \(2015^{2016}+1\)ko đồng thời là số nguyên tố (đpcm)
Vì 1986 chia hết cho 3
=>19862016 chia hết cho 3
vậy 19862016 -1 không chia hết cho 3
Vì 1000 chia 3 dư 1
=>10002016 chia 3 dư 1
Vậy 10002016 -1 chia hết cho 3
Vì tử không chia hết cho 3 mà mẫu chia hết 3
=> A không thể là 1 số nguyên