K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

   \(x^2-xy+y^2=3\)

\(\Leftrightarrow\)\(x^2-xy+y^2-3=0\)

Để phương trình có nghiệm thì:

       \(\Delta=y^2-4\left(y^2-3\right)\ge0\)

\(\Leftrightarrow\)\(y^2-4y^2+12\ge0\)

\(\Leftrightarrow\)\(-3y^2\ge-12\)

\(\Leftrightarrow\)\(y^2\le4\)

\(\Rightarrow\)\(y=\left\{0;\pm1;\pm2\right\}\)

đến đây tự lm tiếp nhé, thay y vào pt ban đầu rồi giải tìm x là xog

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

14 tháng 1 2016

TH1:x,y,z=0

TH2:x=2\(\frac{3}{10}\)

y=3\(\frac{5}{6}\)

z=11\(\frac{1}{2}\)

14 tháng 1 2016

giải ra cơ kết quả mik cx có mà hình như KQ sai rồi

2 tháng 1 2022

  Ta có: 
I'=(1/2+(-1/2);1+3)=(0;4)                 => X^2 -(y-4)^2=3^2                    <=> x^2 - (y^2-8y+16)=9                <=> x^2 -y^2 +8y  -16-9=0.        <=> x^2 - y^2 +8y - 25 =0                

Chọn D

 

 

 

 

Ta có : x2 - 2x - 3m2 = 0 

Tại m = 1 thì pt trở thành : 

x2 - 2x - 3.1= 0 

<=> x2 - 2x - 3 = 0 

<=> x2 - 3x + x - 3= 0 

<=> x(x - 3) + (x - 3) = 0 

<=> (x - 3)(x + 1) = 0 

<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)

18 tháng 7 2015

+x = 0 thì pt (1) thành 0 = 1 (vô lí)

+Xét x khác 0.

\(pt\left(1\right)\Leftrightarrow2+3y=\frac{1}{x^3};\text{ }pt\left(2\right)\Leftrightarrow y^3=2+\frac{3}{x}\)

Đặt \(a=\frac{1}{x}\) thì hệ thành

\(2+3y=a^3;\text{ }2+3a=y^3\)

\(\Rightarrow2+3y+y^3=2+3a+a^3\Leftrightarrow a^3-y^3+3\left(a-y\right)=0\)

\(\Leftrightarrow\left(a-y\right)\left(a^2-ay+y^2+3\right)=0\)

\(\Leftrightarrow a=y\text{ (do }a^2-ay+y^2+3=\left(a-\frac{y}{2}\right)^2+\frac{3y^2}{4}+3>0\text{)}\)

Thay vào pt đầu ta có: \(a^3=3a+2\Leftrightarrow\left(a+1\right)^2\left(a-2\right)=0\Leftrightarrow a=-1\text{ hoặc }a=2\)

\(+a=-1\Rightarrow y=-1;\text{ }x=\frac{1}{a}=-1\)

\(+a=2\Rightarrow b=2;\text{ }x=\frac{1}{a}=\frac{1}{2}\)

Vậy tập nghiệm của hệ là \(S=\left\{\left(-1;-1\right);\left(\frac{1}{2};2\right)\right\}\)