K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

12 tháng 10 2020

\(\frac{15}{x-9}=\frac{12}{y-12}=\frac{40}{z-24}\)

=> \(\frac{x-9}{15}=\frac{y-12}{12}=\frac{z-24}{40}\)

Đặt \(\frac{x-9}{15}=\frac{y-12}{12}=\frac{z-24}{40}=k\Rightarrow\hept{\begin{cases}x-9=15k\\y-12=12k\\z-24=40k\end{cases}}\)

=> \(\hept{\begin{cases}x=15k+9\\y=12k+12\\z=40k+24\end{cases}}\)

Mà xy = 200

=> \(\left(15k+9\right)\left(12k+12\right)=200\)

=> 15(12k + 12) + 9(12k + 12) = 200

=> 180k + 180 + 108k + 108 = 200

=> 288k + 216 = 200

=> 288k = -16

Đề của bạn chắc chắn đúng chứ , mình thấy sai rồi đấy :v

25 tháng 11 2023

\(\dfrac{x}{-2}=\dfrac{y}{3}\)

=>\(\dfrac{x}{-4}=\dfrac{y}{6}\)

mà \(\dfrac{y}{6}=\dfrac{z}{2}\)

nên \(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}\)

mà x+y+z=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}=\dfrac{x+y+z}{-4+6+2}=\dfrac{28}{4}=7\)

=>\(x=-4\cdot7=-28;y=6\cdot7=42;z=2\cdot7=14\)

21 tháng 10 2018

(x-1000)/24+(x-998)/26+(x-996)/28 = 3

Lời giải:

  1. Tập xác định của phương trình

  2. Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

  3. Chia cả hai vế cho cùng một số

  4. Đơn giản biểu thức

  5. Lời giải thu được

Ẩn lời giải 

Kết quả: Giải phương trình với tập xác định

x=1024

14 tháng 8 2017

\(\frac{X}{2}=\frac{Y}{3}=\frac{Z}{4}\)\(=\frac{X}{2}=\frac{2Y}{6}=\frac{3Z}{12}\)\(=\frac{X+2Y-3Z}{2+6-12}\)\(=5\)

\(=>X=2.5=10\)

\(=>y=3.5=15\)

\(=>z=4.5=20\)

vậy.....

4 tháng 9 2017

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x+y+z}{2+3+4}=\frac{28}{9}\)

\(x=\frac{28.2}{9}=\frac{56}{9}\)

\(y=\frac{28.3}{9}=\frac{28}{3}\)

\(z=\frac{28.4}{99}=\frac{112}{9}\)

4 tháng 9 2017

Ap dung tinh chat day cac ti so bang nhau ta co

x/2=y/3=z/4=x+y+z/2+3+4=28/9

Suy ra x=28/9.2=56/9

           y=28/9.3=28/3

           z=28/9.4=112/9

9 tháng 9 2018

a) Đặt\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k.\)

Ta có : x = 5k ;  y = 2k ; z = 3k và xyz = 240

=> 5k . 2k . 3k = 240

=> k3 . 30 = 240

=> k3 = 8

=> k = 2

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Leftrightarrow x=10\\\frac{y}{2}=2\Leftrightarrow y=4\\\frac{z}{3}=2\Leftrightarrow x=6\end{cases}}\)  

Vậy : x = 10; y = 4; z = 6

b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{16-9-4}=\frac{12}{3}=4\)

Suy ra :

\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)

\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)

\(\frac{z^2}{4}=4\Leftrightarrow z^2=16\Leftrightarrow z=\pm4\)

Vậy \(\hept{\begin{cases}x=8\\y=6\\z=4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-4\end{cases}}\)

c) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}=\frac{200}{50}=4\) 

Suy ra :

\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)

\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)

\(\frac{z^2}{25}=4\Leftrightarrow z^2=100\Leftrightarrow z=\pm10\)

Vậy :\(\hept{\begin{cases}x=8\\y=6\\z=10\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-10\end{cases}}\)