Tìm 2 số biết tổng của chúng bằng 25 hiệu các bình phương của chúng bằng 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
gọi 2 số đó là a và b \(\left(a,b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}a+b=19\left(1\right)\\a^2+b^2=185\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow\left(a+b\right)^2=19^2=361\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right)\Rightarrow2ab=176\Rightarrow ab=88\left(4\right)\)
Từ (1) và (4) \(\Rightarrow a,b\) là nghiệm của pt \(x^2-19x+88=0\)
\(\Rightarrow\left(x-11\right)\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=8\\b=11\end{matrix}\right.\\\left\{{}\begin{matrix}a=11\\b=8\end{matrix}\right.\end{matrix}\right.\)
Vậy 2 số cần tìm là 8 và 11
Gọi 2 số cần tìm là a và b (là số tự nhiên)
Theo bài ra ta có: a-b=2
a2-b2=36
=>(a-b)(a+b)=36
=>2(a+b)=36
=>a+b=18
=>a=(18+2):2=10
b=10-2=8
Vậy 2 số cần tìm là 10 và 8
Vậy 2 số cần tìm là 8 và 11Gọi 2 số tự nhiên cần tìm là a,b (a>b)
Theo giả thiết, ta có
a + b = 19 và a^2 + b^2 = 185
=> 2ab = (a+b)^2 - (a^2+b^2) = 176 <=> ab = 88
=> a,b là nghiệm của pt x^2 - 19x + 88 = 0 (*)
(*) <=> (x-11)(x-8) = 0 <=> x= 8 hoặc x = 11
=> (a,b) = (11;8)
gọi x là số tự nhiên thứ nhất , y là số tự nhiên thứ hai . (x,y > 0)
tổng của chúng bằng 19
=> x + y = 19
<=> x = 19 - y
tổng các bình phương của chúng bằng 185
=> x^2 + y^2 = 185
<=> (19 - y)^2 + y^2 = 185
<=> 361 - 38y + y^2 + y^2= 185
<=> 2y^2 - 38y + 176 = 0
<=> y = 8 hoặc y = 11
y = 8 => x = 19 - 8 = 11
y = 11 => x = 19 - 11 = 8
vậy hai số tự nhiên đó là 8 và 11
0 VÀ 25
VÌ 0 + 25 = 25
( BẰNG TỔNG CỦA CHÚNG LÀ 25 )
( TỔNG CỦA CHÚNG BẰNG 25 )
OK ~
Gọi 2 số là a và b (a,b....)
Theo bài ta có:
\(\hept{\begin{cases}a+b=23\\\left(a-b\right)^2=23\end{cases}}\Rightarrow\hept{\begin{cases}a=23-b\\\left(a-b\right)^2=23\end{cases}}\)
\(\Rightarrow\left(23-b-b\right)^2=23\)\(\Rightarrow b=....\)
\(\Rightarrow a=23-b=23-....\)
Gọi các số hạng của CSN là \(u_1;u_1q;u_1q^2;u_1q^3\)
\(\Rightarrow\left\{{}\begin{matrix}u_1\left(1+q+q^2+q^3\right)=15\\u_1^2\left(1+q^2+q^4+q^6\right)=85\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1^2\left(q+1\right)^2\left(q^2+1\right)^2=225\\u_1^2\left(q^2+1\right)\left(q^4+1\right)=85\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(q+1\right)^2\left(q^2+1\right)}{q^4+1}=\dfrac{45}{17}\)
\(\Leftrightarrow14q^4-17q^3-17q^2-17q+14=0\)
Với \(q=0\) ko phải nghiệm, với \(q\ne0\)
\(\Leftrightarrow14\left(q^2+\dfrac{1}{q^2}\right)-17\left(q+\dfrac{1}{q}\right)-17=0\)
\(\Leftrightarrow14\left(q+\dfrac{1}{q}\right)^2-17\left(q+\dfrac{1}{q}\right)-45=0\Rightarrow\left[{}\begin{matrix}q+\dfrac{1}{q}=-\dfrac{9}{7}\\q+\dfrac{1}{q}=\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7q^2+9q+7=0\\2q^2-5q+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow u_1=\dfrac{15}{1+q+q^2+q^3}=...\)
Hai số đó là 13 và 12
3^2 + 4^2 = 9+16 = 25