Giúp mình với: cho 0>x>or= -1. Tìm giá trị loiwns nhất của
A=x/4+4/x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{\dfrac{8x^2}{x^2}}=6\)
\(A_{min}=6\) khi \(x=1\)
\(B=x^3+\dfrac{3}{x}=x^3+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}\ge4\sqrt[4]{\dfrac{x^3}{x^3}}=4\)
\(B_{min}=4\) khi \(x=1\)
Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4