tính nhanh
\(\frac{145x42+120}{145x43-25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)
Dễ ẹc ak :v rút gọn là ra
=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))
=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).
=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).
=\(\frac{8}{5}\)+\(\frac{14}{15}\).
=\(\frac{15}{38}\)
=2/10+3/10+4/10+......+13/10
=\(\frac{2+3+4+......+13}{10}\)
=90/10=9
k cho mình nha
\(E=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(E=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(E=2\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(E=2\left(\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{15x16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(E=\frac{3}{8}\)
1/2E=1/20+1/30+1/42+...+1/240. =>1/2E=1/4*5+1/5*6+1/6*7+...+1/15*16. =>1/2E=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16. =>1/2E=1/4-1/16=3/16. =>E=3/16:1/2=3/8. Câu b có vấn đề.
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
120 x 64 + 320 - 25 x 4 x 16 = 120 x 4 x 16 + 20 x 16 - 100 x 16
= 480 x 16 + 20 x 16 - 100 x 16
= 16 x (480 + 20 - 100)
= 16 x 400
= 6400
a) = 9/5 + 3/4 + 1/4 + 6/5
= ( 9/5 + 6/5 ) + ( 3/4 + 1/4 )
= 3 + 1
= 4
\(\frac{25}{72}+\frac{25}{90}+\frac{25}{110}+...+\frac{25}{9900}\)
= \(25.\left(\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+...+\frac{1}{9900}\right)\)
= \(25.\left(\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+...+\frac{1}{99.100}\right)\)
= \(25.\left(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(25.\left(\frac{1}{8}-\frac{1}{100}\right)\)
= \(25.\frac{23}{200}\)
= \(\frac{23}{8}\)
\(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{121}{120}.\frac{144}{143}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}...\frac{11.11}{10.12}.\frac{12.12}{11.13}\)
\(=\frac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
\(=\frac{\left(2.3.4.5...11.12\right).\left(2.3.4.5...11.12\right)}{\left(1.2.3.4...10.11\right).\left(3.4.5.6...12.13\right)}\)
\(=\frac{12.2}{1.13}\)
\(=\frac{24}{13}\)
( Dấu \(.\)là dấu \(\times\)nha )