cho các số dương a và b thõa mãn a+b=1
cm:(1+1a)(1+1b)≥9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh BĐT
( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9
Áp dụng BĐT Cô – si cho hai số dương ta có:
a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng
= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3
Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1 + b 2 ≥ 2 b
Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )
Tương tự ta có:
b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )
Cộng từng vế của (1), (2) và (3) ta có:
a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3
Đáp án A
Ta có: P = log a b b a = 2 log a b b a
= 2 log a b b − log a b a = 2 1 log b a b − 1 2 log a b a
= 2 1 1 + log b a − 1 2 . 1 log a a b = 2 1 1 + 1 log a b − 1 2 . 1 1 + log a b = 2 1 1 + 1 5 − 1 2 . 1 1 + 5 = 11 − 3 5 4
Đáp án A
Ta có
P = log a b b a = 2. log a b b a = 2 log a b b − log a b a = 2 1 log b a b − 1 2 log a b a
= 2 1 1 + log b a − 1 2 . 1 log a a b = 2 1 1 + 1 log a b − 1 2 . 1 1 + log a b = 2 1 1 + 1 5 − 1 2 . 1 1 + 5 = 11 − 3 5 4 .
Ta có : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)
\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\Leftrightarrow ab+a+b+1\ge9ab\) ( vì \(ab>0\) )
\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) ( vì \(a+b=1\) )
\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) ( Vì \(a+b=1\) ) \(\Leftrightarrow\left(a-b\right)^2\ge0\left(2\right)\)
BĐT ( 2 ) đúng , mà các phép biến đổi trê tương đương , vây BĐT ( 1 ) được chứng minh . Xảy ra đẳng thức khi và chỉ khi \(a=b\)
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
\(M=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2.\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16.\dfrac{\left(a+b\right)^2}{4}}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
dấu = xảy ra khi x=y=2
tick mik nha
Ta có bất đẳng thức phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{1}{4}\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương:
\(ab+\dfrac{1}{ab}=16ab+\dfrac{1}{ab}-15ab\ge2\sqrt{16ab.\dfrac{1}{ab}}-15.\dfrac{1}{4}=8-\dfrac{15}{4}=\dfrac{17}{4}\)
https://olm.vn/hoi-dap/question/82518.html
Ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)
\(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)
\(=4+2\frac{b}{a}+2\frac{a}{b}+1\)
\(=5+2\left(\frac{b}{a}+\frac{a}{b}\right)\)
Áp dụng bdt Cô - si ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge5+2.2=9\)