Tìm số tự nhiên n để 2n-1 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2n+7\vdots n+1$
$\Rightarrow 2(n+1)+5\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Ta có : 2n+7\(⋮\)n+1
\(\Rightarrow\)2n+2+5\(⋮\)n+1
\(\Rightarrow\)2(n+1)+5\(⋮\)n+1
Mà 2(n+1)\(⋮\)n+1 nên 5\(⋮\)n+1
\(\Rightarrow\)n+1\(\in\)Ư(5)={1;5}
+)n+1=1
n=0 (thỏa mãn)
+)n+1=5
n=4 (thỏa mãn)
Vậy n\(\in\){0;5} là giá trị cần tìm.
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
Nếu n = 3k thì
A = 2^(3k) - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7. [8^(k-1) + 8^(k-2) +..+ 8 + 1] chia hết cho 7
Nếu n = 3k+1 thì
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2 . 7p + 1 chia 7 dư 1
Nếu n = 3k+2 thì
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4 . 7p + 3 chia 7 dư 3
Vậy n = 3k (k \(\in\) N) thỏa mãn đề bài.