K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Nếu n = 3k thì
A = 2^(3k) - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7. [8^(k-1) + 8^(k-2) +..+ 8 + 1] chia hết cho 7 

Nếu n = 3k+1 thì
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2 . 7p + 1 chia 7 dư 1 

Nếu n = 3k+2 thì
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4 . 7p + 3 chia 7 dư 3 

Vậy n = 3k (k \(\in\) N) thỏa mãn đề bài.         

AH
Akai Haruma
Giáo viên
20 tháng 7 2024

Lời giải:
$2n+7\vdots n+1$

$\Rightarrow 2(n+1)+5\vdots n+1$

$\Rightarrow 5\vdots n+1$

$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

6 tháng 12 2019

Ta có : 2n+7\(⋮\)n+1

\(\Rightarrow\)2n+2+5\(⋮\)n+1

\(\Rightarrow\)2(n+1)+5\(⋮\)n+1

Mà 2(n+1)\(⋮\)n+1 nên 5\(⋮\)n+1

\(\Rightarrow\)n+1\(\in\)Ư(5)={1;5}

+)n+1=1

   n=0  (thỏa mãn)

+)n+1=5

    n=4  (thỏa mãn)

Vậy n\(\in\){0;5} là giá trị cần tìm.

6 tháng 12 2019

Phần kết luận tớ kết luận sai, phải là n thuộc {0;4}.

8 tháng 5 2015

\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)

\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)

\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)

=>n+3 \(\in U_{\left(1\right)}\)

ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)

ta co bang :

n+31-1
n-2   -4     

vi n \(\in\)N

=>n khong co gia tri

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a.

$2n+7\vdots n+2$

$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$

$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
 tự nhiên)

$\Rightarrow n\in\left\{-1;1\right\}$

Vì $n$ là số tự nhiên nên $n=1$
b.

$4n-5\vdots 2n-1$

$\Rightarrow 2(2n-1)-3\vdots 2n-1$

$\Rightarrow 3\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$

$\Rightarrow n\in\left\{1;0; 2; -1\right\}$

Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$