-1+(-1)3+(-1)5+(-1)7+...+(-1)101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S = \(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\)
2S + 1/101 = \(1-\frac{1}{101}+\frac{1}{101}=1\)
Ta có:
1 + 3 có 2 số hạng => 1 + 3 = 2^2
1 + 3 + 5 có ( 5 - 1 ) : 2 +1 = 3 số hạng => 1 + 3 + 5 = (5 + 1 ). 3 : 2 = 3^2
1 + 3 + 5 + 7 có: ( 7 - 1 ) : 2 + 1 =4 số hạng => 1 + 3 + 5 + 7 = ( 7 + 1 ) .4 : 2 = 4^2
...
1 + 3 + 5 + 7 +... + 101 có ( 101 -1 ) : 2 + 1 =51 số hạng => 1 + 3 + 5 + 7 +... + 101 = ( 101 + 1 ) . 51 : 2 =51^2
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{51^2}\)
\(< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{51}\right)< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
=> B < 3/4
Bạn tham khảo ở đây nhé: https://hoc24.vn/hoi-dap/question/241567.html
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)
\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)
\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)
....
\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)
=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)
=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)
=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}\cdot\frac{100}{101}\)
\(=\frac{250}{101}\)
Đặt S = | 1 | + | 1 | + … + | 1 |
1 . 3 | 3 . 5 | 99 . 101 |
1 | - | 1 | = | 3 - 1 | = | 2 |
1 | 3 | 1 . 3 | 1 . 3 |
1 | = | 1 | ( | 1 | - | 1 | ) |
1 . 3 | 2 | 1 | 3 |
1 | = | 1 | ( | 1 | - | 1 | ) |
3 . 5 | 2 | 3 | 5 |
1 | = | 1 | ( | 1 | - | 1 | ) |
5 . 7 | 2 | 5 | 7 |
1 | = | 1 | ( | 1 | - | 1 | ) |
99 . 101 | 2 | 99 | 101 |
S = | 1 | ( | 1 | - | 1 | ) |
2 | 1 | 101 |
S = | 1 | 101 - 1 | |
2 | 101 |
S = | 100 |
202 |
Tổng ban đầu = | 50 |
101 |
Tổng số số hạng là: (101-1):2+1=51 (số hạng)
Vì số mũ là lẻ nên các số hạng đều mang dấu âm
=> Kết quả = -(1+1+1+...+1) = -51
Đáp số: -51
=-1+(-1)*(-1)2+(-1)*(-1)4+(-1)*(-1)6+...+(-1)*(-1)100 =-1+(-1)*1+(-1)*1+(-1)*1+...+(-1)*1 =-1+(-1)+(-1)+(-1)+...+(-1) =-1+(-50) =-51