K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

10 tháng 1 2022

TK

 

a: Xét ΔADB và ΔADC có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>MD=DN

=>ΔDMN cân tại D

Cho tam giác ABC vuông tại A có BC = 10 cm; AB = 6 cm a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. Chứng minh tam giác ABC = tam giác ADC. c) Gọi K là trung điểm của BC, đường thẳng DK cắt AC tại M. Tính độ dài MC.------------------------------------------------------------------------------------------------------------------------Cho tam giác ABC...
Đọc tiếp

Cho tam giác ABC vuông tại A có BC = 10 cm; AB = 6 cm

 a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC.

 b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. Chứng minh tam giác ABC = tam giác ADC.

 c) Gọi K là trung điểm của BC, đường thẳng DK cắt AC tại M. Tính độ dài MC.

------------------------------------------------------------------------------------------------------------------------

Cho tam giác ABC vuông tại A, biết AB = 9 cm và AC = 12 cm

 a) Tính độ dài đoạn thẳng BC.

 b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác ABC = tam giác ADC.

 c) Gọi M là trung điểm của cạnh AD, đường thẳng qua M vuông góc với AD cắt DC tại P. Chứng minh P là trung điểm của DC.

 d) Gọi Q là trung điểm của BC. Chứng minh các đường BP, CA, DQ đồng quy.

_ Các bạn có thể giải 1 trong hai đề hoặc cả hai đều được, cảm ơn các bạn nhiều!

0
23 tháng 3 2021

A B C D H

D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!

Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+62

BC2=36+36

BC2=72

⇒BC=\(\sqrt{72}\)

xét hai tam giác vuông AND và HBD có:

\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )

BD là cạnh chung

⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)

⇒AB=HB(2 cạnh tương ứng)

⇒ΔABH là tam giác cân

gọi D' là giao điểm của AH và BD ta có:

xét ΔABD' và ΔHBD' có:

\(\widehat{DBH}\) =\(\widehat{DBA}\)  (BC là tia phân giác của\(\widehat{HBA}\) )

AB=HB(ΔABH cân tại B)

\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)

⇒ ΔABD' = ΔHBD' (G-C-G)

⇒HD'=AD'(2 cạnh tương ứng)

vì  ΔABD' = ΔHBD' 

⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)

Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)

Từ (1)và(2) ⇒ D'B⊥AH(3)

Từ (1)và(3) ⇒BD là đường trung trực của AH