tinh : (1/2-1).(1/3-1).(1/4-1)....(1/2014-1).(1/2015-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
S = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2014x2015 + 1/2015x2016
S = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015 + 1/2015 - 1/2016
S = 1 - 1/2016
S = 2015
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{1}{2015}+\frac{2}{2014}+...+\frac{2014}{2}+\frac{2015}{1}\)
\(=\left(1+\frac{1}{2015}\right)+\left(1+\frac{2}{2014}\right)+...+\left(1+\frac{2014}{2}\right)+\left(\frac{2015}{1}-2014\right)\)
\(=\frac{2016}{2015}+\frac{2016}{2014}+...+\frac{2016}{2}+\frac{2016}{2016}\)
\(=2016.\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{3}+\frac{1}{2}\right)\)
\(=2016.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{2016.A}=\frac{1}{2016}\)
Vậy \(\frac{A}{B}=\frac{1}{2016}\)
a) Đầu tiên chúng ta lấy (1/2-1/2016):1+1:2 thì sẽ ra số cặp ở trong phép tính trên .
Tiếp theo ta sẽ lấy 1/2016 + 1/2 thì sẽ ra giá trị một cặp
Rồi ta lấy giá trị 1 cặp nhân với số cặp thì sẽ ra tổng của phép tính trên
b) ta cũng làm như phần a nhưng chỉ khác mỗi chỗ là tìm số cặp :phần b là (2015/1-1/2015):1+1:2 thì sẽ ra
Bạn thông cảm cho mình vì mình vì mình quên không mang máy tính về nên bạn tự tính nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
\(=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2014}{2015}\right)\)
Số thừa số của tổng trên là 2014 - 1 + 1 = 2014 (thừa số) - là số chẵn nên tích trên luôn dương và bằng
\(=\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}=\frac{1}{2015}\)