chứng minh rằng với c<0, ta có \(\left(c-1\right)^2\left(2c+1\right)\ge0\) đẳng thúc sảy ra khi nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a2(1+b2) + b2(1+c2) + c2(1+a2) = a2 + a2b2 + b2 + b2c2 + c2 + a2c2
Áp dụng bất đẳng thức Cô si cho 6 số không âm a2, a2b2, b2, b2c2, c2, a2c2 ta được:
a2 + a2b2 + b2 + b2c2 + c2 + a2c2 >= 6\(\sqrt{a^6b^6c^6}\)= 6abc
=> a2(1+b2) + b2(1+c2) + c2(1+a2) >= 6abc
Dấu = xảy ra khi
a2=a2b2=b2=b2c2=c2=a2c2
a=b=c=+-1
![](https://rs.olm.vn/images/avt/0.png?1311)
2) a) Không mất tính tổng quát, ta giả sử \(a\ge b\ge c>0\).Suy ra \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{b}{c+a}< \frac{b}{b+c}\); \(\frac{c}{a+b}< \frac{c}{b+c}\); \(\frac{a}{b+c}< 1\)
\(\Rightarrow\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{b+c}< \frac{b+c}{b+c}+1=2\)
b) Đặt \(x=b+c-a\); \(y=c+a-b\); \(z=a+b-c\);
Khi đó : \(2a=y+z\Rightarrow a=\frac{y+z}{2}\). \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
Mặt khác ta có : \(\frac{x}{y}+\frac{y}{x}\ge2\); \(\frac{y}{z}+\frac{z}{y}\ge2\); \(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\Rightarrow\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\ge\frac{1}{2}\left(2+2+2\right)\)
hay \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :
\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)
Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:
Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)
\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)
Thôi,đi vào giải quyết bài toán.
Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)
Khi đó BĐT tương đương với:
\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)
Ta cần chứng minh:
\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)
\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\)
Hình như cái BĐT cuối đúng thì phải ạ.
Dấu "=" xảy ra tại a=b=c=1
![](https://rs.olm.vn/images/avt/0.png?1311)
(a2+ab+ac)(a2+ab+ac+bc)+b2c2
đặt a2+ab+ac=x; bc=y
=>x(x+y)+y2=x2+xy+y2>=0(đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)
\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi a = b = c = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\)
\(\Leftrightarrow ab+2ad-2bc-4cd=ab+2bc-2ad-4cd\)
\(\Leftrightarrow2ad+2ad=2bc+2bc\Leftrightarrow4ab=4bc\)
\(\Leftrightarrow ad=bc\Rightarrow\dfrac{a}{b}=\dfrac{c}{d},\left(a,b,c,d\ne0\right)\)