Cho a/b biết 4/7<a/b<2/3 và 3a+7b=1994
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a}{b}=\frac{4}{7}\Rightarrow a=\frac{4}{7}.b\)
Lại có b-a=81
thay \(a=\frac{4}{7}.b\)vào ta đc
\(b-\frac{4}{7}.b=81\Rightarrow b.\left(1-\frac{4}{7}\right)=81\)
\(\Rightarrow\frac{3}{7}.b=81\Rightarrow b=189\)
=> a=b-81=189-81=108
\(\Rightarrow\frac{a}{b}=\frac{108}{189}\)
Vậy .....
tk mk nha bn
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)
\(\Rightarrow a-b=-1\)
\(\Rightarrow A=\left(-1\right)^5=?\)
\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)
a) M là số lẻ( vì hai số lẻ cộng nhau thành số chẵn và ở đây có 8 số)
b) Ta có: \(M=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(\Rightarrow M=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+\left(7^7+7^8\right)\)
\(\Rightarrow M=7\left(1+7\right)+7^3\left(1+7\right)+7^5\left(1+7\right)+7^7\left(1+7\right)\)
\(\Rightarrow M=\left(7+1\right)\left(7+7^3+7^5+7^7\right)\)
\(\Rightarrow M=8\left(7+7^3+7^5+7^7\right)\)
\(\Rightarrow\)M không chia hết cho 5