Tìm m để bpt x+m>3 có nghiệm là {x|x>2}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : Tìm m để bpt \(4mx>x+1\)có nghiệm .......v..........v.............
Ta có : \(4mx>x+1\)
\(\Leftrightarrow4mx-x>1\)
\(\Leftrightarrow x\left(4m-1\right)>1\)
\(\Leftrightarrow x>\frac{1}{4m-1}\)
Để x > 9 thì \(\frac{1}{4m-1}\ge9\)
\(\Leftrightarrow1\ge9\left(4m-1\right)\)
\(\Leftrightarrow1\ge36m-9\)
\(\Leftrightarrow10\ge36m\)
\(\Leftrightarrow m\le\frac{18}{5}\)
a, Câu hỏi tương đương với đề bài vì nghiệm chính là x nên 2 câu tương đương nhau
b, -5 > x
Mà \(x>\frac{1}{4m-1}\)
\(\Rightarrow-5>\frac{1}{4m-1}\)
Giải ra tìm được m
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)
- Với \(m=2\) BPT luôn có nghiệm \(x\ge-\frac{2}{3}\) (ktm)
- Với \(m\ne2\) để BPT vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< 2\\\left[{}\begin{matrix}m>3+\sqrt{10}\\m< 3-\sqrt{10}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< 3-\sqrt{10}\)
Bài 1:
a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)
\(\Rightarrow-1< m< 2\)
b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Bài 2:
a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+4m-28< 0\)
\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)
Bài 3:
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)
TH1: 3-m = 0 <=> m=3 khi đó bpt thành
=> 12x + 5 ≥ 0 \(\Leftrightarrow x\ge\dfrac{-5}{12}\) (ko thỏa)
=> loại m=3
TH2: 3-m ≠ 0 <=> m≠3 khi đó bpt nghiệm đúng vs mọi x
=> \(\left\{{}\begin{matrix}3-m\ge0\\\Delta'\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\2m^2+5m+3\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\\dfrac{-3}{2}\le m\le-1\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le m\le-1\)
vậy \(\dfrac{-3}{2}\le m\le-1\) thỏa ycbt
*m=2 VT của BTP trở thành: -2x+4
-2x+4\(\le0\) <=> x\(\ge\)2
vậy loại giá trị m=2.
*m\(\ne\)2 : bpt (m-2)x2 - 2(2m-3)x +5m - 6 > 0 vô nghiệm<=>
(m-2)x2 - 2(2m-3)x +5m - 6 \(\le\)0 \(\forall x\) .<=>
\(\left\{{}\begin{matrix}m-2< 0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+4m-3\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m\in(-\infty;1]\cup[3;+\infty)\end{matrix}\right.\)
\(\Leftrightarrow m\in(-\infty;1]\)
vậy giá trị m cần tìm là \(m\in(-\infty;1]\)