K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge a+b+c\)

\(\Rightarrow6=a+b+c+ab+bc+ac\le\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\)

Đặt \(\sqrt{3\left(a^2+b^2+c^2\right)}=t\Rightarrow a^2+b^2+c^2=\frac{t^2}{3}\)

\(\Rightarrow t+\frac{t^2}{3}\ge6\Leftrightarrow3t+t^2-18\ge0\Leftrightarrow\left(t-3\right)\left(t+6\right)\ge0\)

\(\Rightarrow t-3\ge0\Rightarrow t\ge3\)( vì t + 6 > 0 )

\(\Rightarrow P\ge a^2+b^2+c^2=\frac{t^2}{3}\ge3\)

Vậy GTNN của P là 3 khi a = b = c = 1

13 tháng 1 2017

vì a<0;A>0 và b<c

=> a và b là số âm, còn c là số dương.

mà A>0 => c>0 vì A=a.b.c

vì b là số âm => b<0.

(do đó: b.c<0.)

vậy b<0 và c>0.

chúc học giỏi, k nha...

7 tháng 2 2020

    Có: a<0, A>0, b<c.

  => a và b là số nguyên âm, c là số nguyên dương.

        mà A>0.

  => c>0(vì A=a.b.c).

        mà b là số nguyên âm.

  =>b<0.

    Vậy b<, c>0.

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

8 tháng 9 2017

Bài làm

- Xét a(b+2001)=ab+2001a

        b(a+2001)=ab+2001b

- Ta xét 3 trường hợp sau:

+Nếu a>b =>2001a>2001b

                 =>a(b+2001)>b+(a+2001)

                 =>a/b > a+2001/b+2001

+Nếu a<b =>2001a<2001b

                 =>a(b+2001)<b+(a+2001)

                 =>a/b < a+2001/b+2001

+Nếu a=b =>a/b = a+2001/b+2001

8 tháng 9 2017

a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

Nếu a>0 và b>0 thì a+c>b+c

Nếu a<0 và b<0 thì a+c<b+c

Nếu a>b và c>0 thì ac>bc

Nếu a>c và c<0 thì ac<bc