tìm giá tri lớn nhất của phân số \(\frac{ab}{a+b}\) (ab là số có 2 chữ số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo nha : https://olm.vn/hoi-dap/question/93342.html
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{1a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9:a}{(a+b):a}=1+\frac{9}{a+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất => \(\frac{9}{a+\frac{b}{a}}\)nhỏ nhất =>\(a+\frac{b}{a}\)lớn nhất => b = 9 , a = 1
Vậy Amin = \(\frac{19}{1+9}=\frac{19}{10}=1,9\)
\(\frac{ab}{a+b}=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
Để \(\frac{ab}{a+b}\) nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\) nhỏ nhất => \(1+\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất mà a; b là các chữ số
=> b = 9 ; a = 1
Vậy \(\frac{ab}{a+b}\) lớn nhất bằng 19/10
Câu hỏi của Phạm Hồng Ánh - Toán lớp 6 - Học toán với OnlineMath
BẠN THAM KHẢO
\(A=\frac{ab}{a+b}\ge\frac{\frac{\left(a+b\right)^2}{2}}{a+b}=\frac{\left(a+b\right)^2}{2}.\frac{1}{a+b}=\frac{a+b}{2}\ge\sqrt{ab}\)
=>MaxA=\(\sqrt{ab}\)khi a=b