So sánh a và b biết:
a) 2a-9 > 2b-9
b) 5-9a <5-9b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Vì \(a\le b\Rightarrow-9a\ge-9b\)
+)Vì \(1< 2\Rightarrow a+1< a+2\)(1)
Vì \(a\le b\Rightarrow a+2\le b+2\)(2)
Từ (1) và (2)\(\Rightarrow a+1< b+2\)
+)Vì \(a\le b\Rightarrow2a\le2b\)
\(\Rightarrow2a-1\le2b-1\)(3)
Vì \(-1< 1\Rightarrow2b-1< 2b+1\)(4)
Từ (3) và (4)\(\Rightarrow2a-1< 2b+1\)
Gọi a(bạn) là số học sinh của lớp 9A(Điều kiện: \(a\in Z^+\))
Gọi b(bạn) là số học sinh của lớp 9B(Điều kiện: \(b\in Z^+\))
Vì khi chuyển ba học sinh từ 9A sang lớp 9B thì số học sinh hai lớp bằng nhau nên ta có phương trình:
\(a-3=b+3\)
\(\Leftrightarrow a-3-b-3=0\)
\(\Leftrightarrow a-b-6=0\)
hay a-b=6(1)
Vì khi chuyển 5 học sinh từ 9B sang lớp 9A thì số học sinh lớp 9B bằng \(\dfrac{11}{19}\)số học sinh lớp 9A nên ta có phương trình:
\(b-5=\dfrac{11}{19}\cdot\left(a+5\right)\)
\(\Leftrightarrow b-5-\dfrac{11}{19}a-\dfrac{55}{19}=0\)
\(\Leftrightarrow\dfrac{-11}{19}a+b=\dfrac{150}{19}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=6\\-\dfrac{11}{19}a+b=\dfrac{150}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{19}a=\dfrac{264}{19}\\a-b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=33\left(nhận\right)\\b=a-6=33-6=27\left(nhận\right)\end{matrix}\right.\)
Vậy: Số học sinh lớp 9A là 33 bạn
Số học sinh lớp 9B là 27 bạn
a: \(x\cdot\dfrac{2}{5}+\dfrac{1}{2}\cdot x=9\)
=>\(x\left(\dfrac{2}{5}+\dfrac{1}{2}\right)=9\)
=>\(x\cdot\dfrac{9}{10}=9\)
=>\(x=9:\dfrac{9}{10}=10\)
b: \(\dfrac{1}{9}:x+\dfrac{3}{9}:x=\dfrac{5}{7}\)
=>\(\left(\dfrac{1}{9}+\dfrac{3}{9}\right):x=\dfrac{5}{7}\)
=>\(\dfrac{4}{9}:x=\dfrac{5}{7}\)
=>\(x=\dfrac{4}{9}:\dfrac{5}{7}=\dfrac{4}{9}\cdot\dfrac{7}{5}=\dfrac{28}{45}\)
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
a) a>b
b) b<a
a) 2a - 9 > 2b - 9 \(\Leftrightarrow\) 2a>2b \(\Leftrightarrow\)a>b
b) 5 - 9a < 5 - 9b \(\Leftrightarrow\) -9a < -9b \(\Leftrightarrow\)a>b