Cho a,b,c>0 CMR\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
\(\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Hoặc bạn dùng AM-GM kiểu:
\(\frac{a^3}{b+c}+a\left(b+c\right)\ge2a^2\)
Làm tương tự với 2 cái sau và cộng lại
Ngoài ra có cách dùng AM-GM cho 3 số như sau:
Ta có: \(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge\frac{3}{2}a^2\)
Tương tự rồi cộng lại:
\(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge1\left(a^2+b^2+c^2\right)\)
Sorry, tới đây em bí rồi ạ:v
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng vế với vế:
\(VT\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế: \(VT\ge\frac{a+b+c}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Đề phải là \(a;b;c>0\) lần sau chú ý mà gõ -_-
Ta có : \(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a^3}{b+c}.\frac{a\left(b+c\right)}{4}}=a^2\)(BĐT Cosi)
Tương tự \(\hept{\begin{cases}\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\\\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\end{cases}}\)
Cộng vế với vế của các BĐT vừa chứng minh lại ta được :
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{ab+ac+bc}{2}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+ac+bc}{2}\)
\(\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\) (Do \(a^2+b^2+c^2\ge ab+ac+bc\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Giả sử: \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Chebyshev ta có:
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\)\(\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+c}\right)\)\(=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
Vậy \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Copy paste lại bài hôm rồi, đỡ phải nghĩ:v
Ta chứng minh bổ đề sau: cho hai dãy số dương \(a\ge b\ge c\) và \(x\ge y\ge z\) thì \(ax+by+cz\ge bx+cy+az\)
Thật vậy, BĐT tương đương:
\(\left(a-b\right)x+\left(b-c\right)y-\left(a-c\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)
Áp dụng:
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b^2+c^2}\ge\frac{1}{c^2+a^2}\ge\frac{1}{a^2+b^2}\end{matrix}\right.\)
\(\Rightarrow P=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}+\frac{a^3}{a^2+b^2}\)
Ta có: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Thiết lập tương tự và cộng lại:
\(P\ge\frac{1}{2}\left(a+b+c\right)^2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)