cho đường tròn tâm o bán kính r =4cm va doan thang OA=5cm . chung to diem A nam ben ngoai duong tron (O;4cm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CMO=góc CAO=90 độ
=>CAMO nội tiếp
b: góc OMD+góc OBD=180 độ
=>OMDB nội tiếp
góc COD=góc COM+góc DOM
=180 độ-góc CAM+góc DBM
=180 độ-góc CAM+góc PAB
=góc MAP+góc PAB
=2*góc PAB
=góc AOB
Hình tự vẽ
Theo đề có AB là tiếp tuyến của (O) nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)
Trong tam giác vuông ABO có : OB = R ; OA = 2R nên cos \(\widehat{AOB}=\frac{OB}{OA}=\frac{1}{2}\Rightarrow\widehat{AOB}=60^o\)
Theo t/c 2 tiếp tuyến cắt nhau nên ta có AO là phân giác \(\widehat{BOC}\Rightarrow\widehat{AOC}=60^o\)
mà \(\widehat{AOC}\)và \(\widehat{COD}\)kề bù nên suy ra \(\widehat{COD}=120^o\)
2)tam giác ABE ~ ADB =>AB^2=AE*AD
tam giác ABO vg => AB^2=AH*AO
=>AE/AD=AH/AO
HAE chung
=> tam giác AEH ~ AOD(c-g-c)
=> AHE=ADO mà AHE+EHO=180
=> tứ giác OHED nội tiếp
1)OBA=90=>O,B,A cùng thuộc 1 dg tròn
OCA=90=> O,C,A cùng thuộc 1 dg tròn
OMA=90=> A,M,A cùng thuộc 1 dg tròn
=>....................
Bạn tự vẽ hình nhé!
+) Chứng minh : tam giác ADB đồng dạng với tam giác ABF (g - g)
- Nối O với F. Kẻ OH | BF.
Tam giác OBF cân tại O có OH là đường cao nên đồng thời là đường phân giác => góc BOH = góc BOF/2
Mặt khác, góc BOH = ABF (cùng phụ với góc OBF)
=> góc ABF = góc BOF/2 (*)
- Ta có: góc BDO + DBO = BOC (tính chất góc ngoài tam giác) => 2.BDO = BOC => góc BDO = góc BOC/2
Lại có: góc FDO + DFO = FOC (t/c góc ngoài tam giác) => 2.góc FDO = FOC => góc FDO = góc FOC/ 2
=> góc BDO - FDO = góc BOC /2 - góc FOC/2 = góc BOF/2
=> góc BDF = góc BOF/2 (**)
Từ (*)(**) => góc ABF = BDF mà góc FAB chung
=> Tam giác ADB đồng dạng với ABF (g- g) => \(\frac{AD}{AB}=\frac{AB}{AF}\) => AD.AF = AB2
+ Theo ý a => AI.AO = AD.AF => \(\frac{AI}{AD}=\frac{AF}{AO}\) Lại có góc OAD chung
=> Tam giác AFI đồng dạng với tam giác AOD (c - g- c)
=> góc AIF = ADO ( 2 góc tương ứng)
vì OA<r nên A nằm ngoài đường tròn