K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

      \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Vì    \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)

hay    \(9x^2-6x+1>0\)

12 tháng 4 2018

Ta có :

\(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)

Vậy \(9x^2-6x+3>0\forall x\in R\)

30 tháng 10 2018

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

30 tháng 10 2018

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

5 tháng 12 2017

Ta có:

\(9x^2+6x+2\)

\(=\left(3x\right)^2+2.3x+1+1\)

\(=\left(3x+1\right)^2+1\ge1\)

Vì: 1 > 0

Do đó : \(\left(3x+1\right)^2+1>0\) với mọi x

Vậy \(9x^2+6x+2>0\) với mọi x

21 tháng 4 2021

Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)

=>A(x) > 0 \(\forall x\inℝ\)

21 tháng 4 2021

thanks bạn

14 tháng 6 2016

A(x)=x4+2x2+4

=x4+x2+x2+1+3

=x2.(x2+1)+(x2+1)+3

=(x2+1)(x2+1)+3

=(x2+1)+3>0 với mọi x thuộc R

18 tháng 6 2016

bài bao nhiêu đấy chang

 

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

12 tháng 3 2017

Sai đề ko vậy bạn?

11 tháng 8 2015

x^2-6x+10

=x^2-6x+9+1

=x^2-6x+3^2+1

=(x-3)^2+1

ta có: (x-3)^2 >hoặc = 0 với mọi x

=>(x-3)^2+1>hoặc =0+1 >0 với mọi x

chắc chắn đúng luôn nhớ li-ke cho minh nha

11 tháng 8 2015

\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\)  với mọi x 

=> \(x^2-6x+10>0\)  (ĐPCM)

 

 

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y