chứng tỏ rằng 9x^2-6x+3>0 với mọi x thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mong mọi người giúp với, mình đang cần gấp!!! Thanks
a) (x+3)^2-(x-5)(x+5)-6x
= x^2+6x+9-x^2+25-6x
= 9+25
= 94
vậy...
Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)
=>A(x) > 0 \(\forall x\inℝ\)
A(x)=x4+2x2+4
=x4+x2+x2+1+3
=x2.(x2+1)+(x2+1)+3
=(x2+1)(x2+1)+3
=(x2+1)+3>0 với mọi x thuộc R
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x^2-6x+10
=x^2-6x+9+1
=x^2-6x+3^2+1
=(x-3)^2+1
ta có: (x-3)^2 >hoặc = 0 với mọi x
=>(x-3)^2+1>hoặc =0+1 >0 với mọi x
chắc chắn đúng luôn nhớ li-ke cho minh nha
\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\) với mọi x
=> \(x^2-6x+10>0\) (ĐPCM)
a) x2-6x+10>0
<=>x2-6x+9+1>0
<=>(x-3)2+1>0(đúng với mọi x)
vậy x2-6x+10>0 với mọi x
b)x2-2x+y2+4y+6>0
<=>x2-2x+1y2+4y+4+1>0
<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)
Vậy x2-2x+y2+4y+6>0 với mọi x,y
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\)
\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)
hay \(9x^2-6x+1>0\)
Ta có :
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)
Vậy \(9x^2-6x+3>0\forall x\in R\)