K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Ta có : 

\(\left|3x\right|=x+8\)

+) Nếu \(3x\ge0\)\(\Rightarrow\)\(x\ge0\) ta có : 

\(3x=x+8\)

\(\Leftrightarrow\)\(3x-x=8\)

\(\Leftrightarrow\)\(2x=8\)

\(\Leftrightarrow\)\(x=\frac{8}{2}\)

\(\Leftrightarrow\)\(x=4\) ( thoã mãn ) 

+) Nếu \(3x< 0\)\(\Rightarrow\)\(x< 0\)

\(\Leftrightarrow\)\(-\left(3x\right)=x+8\)

\(\Leftrightarrow\)\(3x+x=-8\)

\(\Leftrightarrow\)\(4x=-8\)

\(\Leftrightarrow\)\(x=\frac{-8}{4}\)

\(\Leftrightarrow\)\(x=-2\) ( thoã mãn ) 

Vậy \(x=4\) hoặc \(x=-2\)

Chúc bạn học tốt ~ 

7 tháng 9 2021

a) \(x^4-13x^2+36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)

b) \(5x^4+3x^2-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))

 

c: Ta có: \(2x^4+3x^2+2=0\)

Đặt \(a=x^2\)

Phương trình tương đương là: \(2a^2+3a+2=0\)

\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm

a) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: S={-5;2}

b) Ta có: \(3x^2-7x+1=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)

c) Ta có: \(3x^2-7x+8=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)

Vậy: \(x\in\varnothing\)

15 tháng 3 2022

ko bt

 

8 tháng 5 2019

Ta có : \(\left|x-1\right|+\left|x-2\right|\ge\left|x-1+x-2\right|=\left|2x-3\right|\)

Mà \(\left|x-1\right|+\left|x-2\right|=3x+1\)

\(\Rightarrow\left|2x-3\right|=3x+1\)(*)

ĐK : \(3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

(*)\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+1\\2x-3=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=4\\5x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\left(loai\right)\\x=\frac{2}{5}\left(chon\right)\end{cases}}\)

Vậy....

3 tháng 9 2016

\(\left|x^2-3x+3\right|=3x-x^2-1\)

Do \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow x^2-3x+3=3x-x^2-1\)

\(\Leftrightarrow2x^2-6x+4=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\end{array}\right.\)

Vậy \(x=1;2\)

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

23 tháng 2 2022

ĐKXĐ:\(x\ne\pm1\)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3x-2}{1-x^2}=0\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+3x-2}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{x^2+2x+1-x^2+2x-1-x^2-3x+2}{\left(x+1\right)\left(x-1\right)}=0\\ \Rightarrow-x^2+x+2=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x^2-2x\right)+\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

23 tháng 2 2022

\(ĐK:x\ne\pm1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-\left[\left(x-1\right)\left(x-1\right)\right]-\left(x^2+3x-2\right)}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2-\left(x^2+3x-2\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-x^2-3x+2=0\)

\(\Leftrightarrow-x^2-x+2=0\)

\(\Leftrightarrow-x^2+x-2x+2=0\)

\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

 

a: 7x+35=0

=>7x=-35

=>x=-5

b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

=>8-x-8(x-7)=1

=>8-x-8x+56=1

=>-9x+64=1

=>-9x=-63

hay x=7(loại)

4 tháng 3 2022

a, \(7x=-35\Leftrightarrow x=-5\)

b, đk : x khác 7 

\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)

vậy pt vô nghiệm 

2, thiếu đề