Cho \(C=\frac{19^{208}+1}{19^{209}+1}\) va \(D=\frac{19^{209}+1}{19^{210}+1}\)
So sanh C va D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:19.C=\(\frac{19^{209}+19}{19^{209}+1}\)=\(\frac{19^{209}+1+18}{19^{209}+1}\)=\(\frac{19^{209}+1}{19^{209}+1}\)+\(\frac{18}{19^{209}+1}\)=1+\(\frac{18}{19^{209}+1}\)19D=\(\frac{19^{210}+19}{19^{210}+1}\)=\(\frac{19^{210}+1+18}{19^{210}+1}\)=\(\frac{19^{210}+1}{19^{210}+1}\)+\(\frac{18}{19^{210}+1}\)=1+\(\frac{18}{19^{210}+1}\).Vì \(\frac{18}{19^{209}+1}\)>\(\frac{18}{19^{210}+1}\)nên 19A>19B\(\Rightarrow\)A>B
19D=\(\frac{\left(19^{209}+1\right).19}{19^{210}+1}=\frac{19^{210}+19}{19^{210}+1}=\frac{\left(19^{210}+1\right)+18}{19^{210}+1}=\frac{19^{210}+1}{19^{210}+1}+\frac{18}{19^{210}+1}=1+\frac{18}{19^{210}+1}\)
Vì 19C>19D nên C>D
Có : \(K=\frac{119^{209}+1}{119^{210}+1}<\frac{119^{209}+1+208}{119^{210}+1+208}=\frac{119^{208}.119+119}{119^{209}.119+199}=\frac{119.\left(119^{208}+1\right)}{119.\left(119^{209}+1\right)}=\frac{119^{208}+1}{119^{209}+1}=H\)
=> K < H hay H > K
Chúc bạn học giỏi !!!
Mình chỉ hướng dẫn bạn thôi nhé!
1. Nhân M vs 10 và N vs 10
2.Tách 10M thành 1 + ... và N cũng vậy.
3.So sánh.
Vậy nhé!
CHÚ Ý: bài toán sau: với \(\frac{a}{b}< 1,\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}+19}{19^{32}+19}< \frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}< \frac{19^{30}+1+4}{19^{31}+1+4}=\frac{19^{30}+5}{19^{31}+5}\)
A,Ta có:\(\frac{19}{18}=1+\frac{1}{18};\frac{2011}{2010}=1+\frac{1}{2010}\)
Vì \(\frac{1}{18}>\frac{1}{2010}\Rightarrow\frac{19}{18}>\frac{2011}{2010}\)
B,ta có:\(1-\frac{72}{73}=\frac{1}{3};1-\frac{98}{99}=\frac{1}{99}\)
Vì \(\frac{1}{3}>\frac{1}{99}\Rightarrow\frac{72}{73}< \frac{98}{99}\)
C,Vì \(\frac{7}{9}< 1< \frac{19}{17}\Rightarrow\frac{7}{9}< \frac{19}{17}\)
ta có : \(\dfrac{1}{2010}>0\) và \(\dfrac{-7}{19}< 0\)
\(\Rightarrow\dfrac{1}{2010}>\dfrac{-7}{19}\)
Ta có: \(D=\frac{19^{209}+1}{19^{210}+1}< \frac{19^{209}+1+18}{19^{210}+1+18}\)
Mà:\(\frac{19^{209}+1+18}{19^{210}+1+18}=\frac{19^{209}+19}{19^{210}+19}=\frac{19\cdot\left(19^{208}+1\right)}{19\cdot\left(2^{209}+1\right)}=\frac{19^{208}+1}{19^{209}+1}=C\)
=> D < C