tìm 4 số nguyên dương a,b,c,d biết b là trung bình cộng của a và c
và \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(b=\frac{a+c}{2}\)
=>2b=a+c (1)
Do \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{1}{2}.\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{bd}=\frac{b+d}{2bd}\)
=>\(\frac{1}{c}=\frac{b+d}{bd}\)
=>2bd=(b+d).c=bc+dc (2)
Từ (1) và (2) ta thấy:
2bd=(a+c).d=ad+cd=bc+dc
=>ad=bc
Đẳng thức này chứng tỏ 4 số a,b,c,d lập nên 1 tỉ lệ thức.
=>ĐPCM
từ 1/c =1/2(1/b+1/d)
2/c=b+d/bd
2bd=bc+cd
vì b là trung bình cộng của a và c
suy ra 2b =a+c
suy ra đến đó tụ làm tiếp nhe tran minh phuong
Vì b là trung bình cộng của a và c
=> b=\(\frac{a+c}{2}\)=> 2b=a+c(1)
Ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{1}{2}\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{bd}=\frac{b+d}{2bd}\)
=>\(\frac{1}{c}=\frac{b+d}{2bd}\)=> 2bd=(b+d)c=bc+dc(2)
Từ (1) và (2)
=> 2bd=(a+c)d=ad+cd=bc+dc
=> ad=bc
=> có thể lập đc 1 tỉ lệ thức từ 4 số trên (đpcm)
Bạn clink vào ô Câu hỏi tương tự
Bạn vàoGiúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath