Tính tổng S = 3/(1x2)2 + 5/(2x3)2 + ... + 201/(100x101)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abba = 1001a + 110b
Mà 1001 chai hết cho 11 và 110 chai hết cho 11
Nên 1001a chia hết cho 11 và 110b chia hết cho11
Suy ra abba chia hết cho 11
Ta có: S = 1.2 + 2.3 + 3.4 + ....... + 99.100 + 100.101
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 100.101.102
=> 3S = 100.101.102
=> S = 100.101.102 / 3
=> S = 343400
\(\frac{B}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\)
\(\frac{B}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)
\(\frac{B}{2}=\frac{100}{101}\)
\(B=\frac{200}{101}\)
A=1x2+2x3+3x4+4x5+......+99x100+100x101
3A=1x2x(3-0)+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98)+100x101x(102-99)
3A=1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100+100x101x102-99x100x101
3A=(1x2x3+2x3x4+3x4x5+4x5x6+...+99x100x101+100x101x102)-(0x1x2+1x2x3+2x3x4+3x4x5+...+98x99x100+99x100x101)
3A=100x101x102
A=100x101x102:3
A=343400
A = 1x2 + 2x3 + 3x4 + 4x5 + ... + 99x100 + 100x101
3A = 1x2x(3-0) + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98) + 100x101x(102-99)
3A = 1x2x3 - 0x1x2 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100 + 100x101x102 - 99x100x101
3A = 100x101x102 - 0x1x2
3A = 100x101x102
A = 100x101x34
A = 343400
a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)
\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)
Đặt \(M=\left(1^2+2^2+........+100^2\right)\)
\(\Rightarrow M=1.1+2.2+.....+100.100\)
\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)
\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)
\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)
\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)
Đặt \(N=1.2+2.3+....+100.101\)
\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)
\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)
\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)
\(\Rightarrow3N=100.101.102-0\)
\(\Rightarrow N=343400\)
Thay N = 343400 vào 1) ta được:
M = 343400 - 5050
=> M = 338350
Thay M = 338350 Vào (a) ta được:
A = 338350 . \(\frac{100}{101}\)
=> \(A=\frac{33835000}{101}\)
Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)
b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)
\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)
Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)
\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)
Rồi bạn làm như ở phần a) ý
\(S=\frac{3}{\left(1\times2\right)^2}+\frac{5}{\left(2\times3\right)^2}+...+\frac{201}{\left(100\times101\right)^2}\)
\(=\frac{2^2-1^2}{\left(1\times2\right)^2}+\frac{3^2-2^2}{\left(2\times3\right)^2}+...+\frac{101^2-100^2}{\left(100\times101\right)^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{100^2}-\frac{1}{101^2}\)
\(=1-\frac{1}{101^2}\)
\(=\frac{10200}{10201}\)