Cho a,b,c là các số tự nhiên khác 0. Biết \(\frac{28}{29}\)<\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)<1. Tính min của tổng S=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
28/29=0,96551.......
mà a, b , c là số tự nhiên nên mình thử ra là 1/2+1/3+1/7 là nhỏ nhất
Tổng nhỏ nhất là 2+3+7=12
cho a, b,c là các số tự nhiên khác 0.Biết 28/29<1/a+1/b+1/c<1.tìm giá trị nhở nhất của tổng P =a+b+c
Để tính GTNN của P=a+b+c thì ta cực tiểu hóa a,b và c (*)
Không giảm tính tổng quát,giả sử \(1\le a\le b\le c\) \(\Rightarrow\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\Rightarrow\frac{28}{29}<\frac{3}{a}\)=>1<a<3 và 3/28 =>a E {2;3} do a E N
\(\)
+)a=2=>b>2 từ (*) chọn b=3 và c=7 vì 1/2+1/3+1/7=41/42 mà 28/29<41/42<1
+)a=3=>c >= b >= 3,nếu a=b=c=3 thì 1/a+1/b+1/c=1
Nếu a=3;b ,c >= 4 thì 1/a+1/b+1/c <= 1/3+1/4+1/4=5/6<28/29(loại a=3)
Vậy (a+b+c)min=2+3+7=12
a: Vì y là số nguyên tố
mà y là ước của 28
nên y=2
=>x=14
b: Theo đề, ta có: x=BCNN(36;90)
hay x=180
Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23
Hiệu của 31 va 29:31-29=2
Thương của phép chia cho 31 là:
(29-23):2=3
Số cần tìm là:
31*3+28=121
DS :121
b)1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)
VD tổng nghịch đâỏ cảu ba số này là 2 thì:
Số lớn nhất là a, số nhỏ nhất là c.
Ta có: c ≤ b ≤ a (1)
Theo giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 (2)
Do (1) nên 2 = \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≤ \(\dfrac{3}{c}\)
Vậy c = 1
Thay vào (2) ta dc :\(\dfrac{1}{a}+\dfrac{1}{b}\) = 1 ≤ \(\dfrac{2}{b}\)
Vậy a = 2 từ đó b = 2
3 số cần tìm là 1; 2; 2.