tìm x :
(1/1.4+1/4.7+1/7.10+...+1/97.100)=0,33.x/2009
giúp mình nhé mình đang cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)
\(\frac{99}{100}=\frac{0,99x}{2009}\)
=>0,99x*100=2009*99
99x=2009*99
=>x=2009
Vậy x=2009
\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)
a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Leftrightarrow2^x\left(1+2^1+2^2+2^2\right)=15.2^x\)
\(\Leftrightarrow15.2^x=480\)
\(\Leftrightarrow2^x=480:15\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
=> x = 5
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}.\frac{99}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1.33}{1.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow33.x=66297\)
\(\Leftrightarrow x=22099\)
\(\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}\right)=\frac{0,33x}{2009}\)
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)=\frac{0,33x}{2009}\)
\(\left(1-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{100}\right)=\frac{0,33x}{2009}\)
\(1-\frac{1}{100}=\frac{0,33x}{2009}\)
\(\frac{99}{100}=\frac{0,33x}{2009}\Rightarrow2009x99=0,33x\times100\)
198891:100:0,33=6027=x
\(3B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}.\)
\(3B=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{103-100}{100.103}\)
\(3B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}=1-\frac{1}{103}=\frac{102}{103}\)
\(B=\frac{102}{3.103}=\frac{34}{103}\)
ta nhân 3 cả hai vế, được :
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)
hay
\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)
\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)
\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )
⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009
⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009
More images for 1−14 +14 −17 +...+197 −1100 =0,99·x2009 100100 −1100 =0,99x2009 99100 =0,99x2009 =>0,99x*100=2009*9999x=2009*99=>x=2009Vậy x=2009 Đúng 4 Sai 0 Diana Andrea đã chọn câu trả lời này.Đỗ Lê Tú Linh 26/12/2015 lúc 22:10 Báo cáo sai phạm